Skip to main content

Endocrinological aspects of HIV infection

Abstract

Purpose

Patients with human immunodeficiency virus (HIV) are living longer with effective antiretroviral therapies and are enjoying near normal life span. Therefore, they are encountering endocrine issues faced by the general population along with those specific to HIV infection. The purpose of this article is to review the common endocrine aspects of HIV infection, and the early detection and management strategies for these complications.

Methods

Recent literature on HIV and endocrine disease was reviewed.

Results

HIV can influence endocrine glands at several levels. Endocrine glandular function may be altered by the direct effect of HIV viral proteins, through generation of systemic and local cytokines and the inflammatory response and via glandular involvement with opportunistic infections and HIV-related malignancies. Endocrine disorders seen in people with HIV include metabolic issues related to obesity such as diabetes, hyperlipidemia, lipohypertrophy, lipoatrophy and lipodystrophy and contribute significantly to quality of life, morbidity and mortality. In addition, hypogonadism, osteopenia and osteoporosis are also more prevalent in the patients with HIV. Although disorders of hypothalamic–pituitary–adrenal axis resulting in adrenal insufficiency can be life threatening, these along with thyroid dysfunction are being seen less commonly in the antiretroviral therapy (ART) era. ARTs have greatly improved life expectancy in people living with HIV but can also have adverse endocrine effects.

Conclusions

Clinicians need to have a high index of suspicion for endocrine abnormalities in people with HIV as they can be potentially life threatening if untreated. Endocrine evaluation should be pursued as in the general population, with focus on prevention, early detection and treatment to improve quality of life and longevity.

This is a preview of subscription content, access via your institution.

References

  1. https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics. Accessed 2 Oct 2017

  2. Antiretroviral Therapy Cohort C (2017) Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies. Lancet HIV 4(8):e349–e356

    Article  Google Scholar 

  3. Brown TT et al (2005) Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med 165(10):1179–1184

    Article  PubMed  Google Scholar 

  4. De Wit S et al (2008) Incidence and risk factors for new-onset diabetes in HIV-infected patients: the data collection on adverse events of anti-HIV drugs (D:a:D) study. Diabetes Care 31(6):1224–1229

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rasmussen LD et al (2012) Risk of diabetes mellitus in persons with and without HIV: a Danish nationwide population-based cohort study. PLoS ONE 7(9):e44575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Polsky S et al (2011) Incident hyperglycaemia among older adults with or at-risk for HIV infection. Antivir Ther 16(2):181–188

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hernandez-Romieu AC et al (2017) Is diabetes prevalence higher among HIV-infected individuals compared with the general population? Evidence from MMP and NHANES 2009–2010. BMJ Open Diabetes Res Care 5(1):e000304

    Article  PubMed  PubMed Central  Google Scholar 

  8. Triant VA et al (2007) Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab 92(7):2506–2512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Galli L et al (2012) Risk of type 2 diabetes among HIV-infected and healthy subjects in Italy. Eur J Epidemiol 27(8):657–665

    Article  PubMed  Google Scholar 

  10. Howard AA et al (2010) The effects of opiate use and hepatitis C virus infection on risk of diabetes mellitus in the Women’s Interagency HIV Study. J Acquir Immune Defic Syndr 54(2):152–159

    PubMed  PubMed Central  Google Scholar 

  11. Butt AA et al (2009) HIV infection and the risk of diabetes mellitus. AIDS 23(10):1227–1234

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hadigan C, Kattakuzhy S (2014) Diabetes mellitus type 2 and abnormal glucose metabolism in the setting of human immunodeficiency virus. Endocrinol Metab Clin North Am 43(3):685–696

    Article  PubMed  PubMed Central  Google Scholar 

  13. Veloso S et al (2012) Leptin and adiponectin, but not IL18, are related with insulin resistance in treated HIV-1-infected patients with lipodystrophy. Cytokine 58(2):253–260

    Article  PubMed  CAS  Google Scholar 

  14. Vigouroux C et al (2003) Serum adipocytokines are related to lipodystrophy and metabolic disorders in HIV-infected men under antiretroviral therapy. AIDS 17(10):1503–1511

    Article  PubMed  CAS  Google Scholar 

  15. Palmer CS et al (2016) Regulators of glucose metabolism in CD4+ and CD8+ T Cells. Int Rev Immunol 35(6):477–488

    Article  PubMed  CAS  Google Scholar 

  16. Butt AA et al (2004) Risk of diabetes in HIV infected veterans pre- and post-HAART and the role of HCV coinfection. Hepatology 40(1):115–119

    Article  PubMed  Google Scholar 

  17. Mehta SH et al (2003) The effect of HAART and HCV infection on the development of hyperglycemia among HIV-infected persons. J Acquir Immune Defic Syndr 33(5):577–584

    Article  PubMed  CAS  Google Scholar 

  18. Monroe AK et al (2011) Sex hormones, insulin resistance, and diabetes mellitus among men with or at risk for HIV infection. J Acquir Immune Defic Syndr 58(2):173–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Rotger M et al (2010) Impact of single nucleotide polymorphisms and of clinical risk factors on new-onset diabetes mellitus in HIV-infected individuals. Clin Infect Dis 51(9):1090–1098

    Article  PubMed  CAS  Google Scholar 

  20. Hruz PW (2011) Molecular mechanisms for insulin resistance in treated HIV-infection. Best Pract Res Clin Endocrinol Metab 25(3):459–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Brown TT et al (2005) Cumulative exposure to nucleoside analogue reverse transcriptase inhibitors is associated with insulin resistance markers in the Multicenter AIDS Cohort Study. Aids 19(13):1375–1383

    Article  PubMed  CAS  Google Scholar 

  22. Cossarizza A, Moyle G (2004) Antiretroviral nucleoside and nucleotide analogues and mitochondria. AIDS 18(2):137–151

    Article  PubMed  CAS  Google Scholar 

  23. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307(5708):384–387

    Article  PubMed  CAS  Google Scholar 

  24. McComsey GA et al (2005) Improvements in lipoatrophy, mitochondrial DNA levels and fat apoptosis after replacing stavudine with abacavir or zidovudine. AIDS 19(1):15–23

    Article  PubMed  CAS  Google Scholar 

  25. Venhoff N et al (2007) Mitochondrial toxicity of tenofovir, emtricitabine and abacavir alone and in combination with additional nucleoside reverse transcriptase inhibitors. Antivir Ther 12(7):1075–1085

    PubMed  CAS  Google Scholar 

  26. Aberg JA et al (2012) Metabolic effects of darunavir/ritonavir versus atazanavir/ritonavir in treatment-naive, HIV type 1-infected subjects over 48 weeks. AIDS Res Hum Retroviruses 28(10):1184–1195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Overton ET et al (2016) Effects of once-daily darunavir/ritonavir versus atazanavir/ritonavir on insulin sensitivity in HIV-infected persons over 48 weeks: results of an exploratory substudy of METABOLIK, a phase 4, randomized trial. HIV Clin Trials 17(2):72–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Quercia R et al (2015) Comparative changes of lipid levels in treatment-naive, HIV-1-infected adults treated with dolutegravir vs. efavirenz, raltegravir, and ritonavir-boosted darunavir-based regimens over 48 weeks. Clin Drug Investig 35(3):211–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bloomgarden ZT, Handelsman Y (2016) Approaches to treatment 2: comparison of American Association of Clinical Endocrinologists (AACE) and American Diabetes Association (ADA) type 2 diabetes treatment guidelines. J Diabetes 8(1):4–6

    Article  PubMed  Google Scholar 

  30. Aberg JA et al (2014) Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 58(1):1–10

    Article  PubMed  Google Scholar 

  31. Kim PS et al (2009) A1C underestimates glycemia in HIV infection. Diabetes Care 32(9):1591–1593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Diop ME et al (2006) Inappropriately low glycated hemoglobin values and hemolysis in HIV-infected patients. AIDS Res Hum Retrovir 22(12):1242–1247

    Article  PubMed  CAS  Google Scholar 

  33. Polgreen PM, Putz D, Stapleton JT (2003) Inaccurate glycosylated hemoglobin A1C measurements in human immunodeficiency virus-positive patients with diabetes mellitus. Clin Infect Dis 37(4):e53–e56

    Article  PubMed  CAS  Google Scholar 

  34. Glesby MJ et al (2010) Glycated haemoglobin in diabetic women with and without HIV infection: data from the Women’s Interagency HIV Study. Antivir Ther 15(4):571–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Slama L et al (2014) Inaccuracy of haemoglobin A1c among HIV-infected men: effects of CD4 cell count, antiretroviral therapies and haematological parameters. J Antimicrob Chemother 69(12):3360–3367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Inzucchi SE et al (2012) Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 55(6):1577–1596

    Article  PubMed  CAS  Google Scholar 

  37. Look ARG et al (2007) Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care 30(6):1374–1383

    Article  Google Scholar 

  38. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. https://aidsinfo.nih.gov/contentfiles/lvguidelines/adultandadolescentgl.pdf. Accessed 28 Nov 2016

  39. Hajjar J, Habra MA, Naing A (2013) Metformin: an old drug with new potential. Expert Opin Investig Drugs 22(12):1511–1517

    Article  PubMed  CAS  Google Scholar 

  40. Kohli R et al (2007) A randomized placebo-controlled trial of metformin for the treatment of HIV lipodystrophy. HIV Med 8(7):420–426

    Article  PubMed  CAS  Google Scholar 

  41. https://www.gsksource.com/pharma/content/dam/GlaxoSmithKline/US/en/Prescribing_Information/Tivicay/pdf/TIVICAY-PI-PIL.PDF. Accessed 2 Oct 2017

  42. Moyle GJ et al (2015) A randomized comparative trial of continued abacavir/lamivudine plus efavirenz or replacement with efavirenz/emtricitabine/tenofovir DF in hypercholesterolemic HIV-1 infected individuals. PLoS ONE 10(2):e0116297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mothe B et al (2009) HIV-1 infection in subjects older than 70: a multicenter cross-sectional assessment in Catalonia, Spain. Curr HIV Res 7(6):597–600

    Article  PubMed  CAS  Google Scholar 

  44. Grinspoon SK et al (2008) State of the science conference: initiative to decrease cardiovascular risk and increase quality of care for patients living with HIV/AIDS: executive summary. Circulation 118(2):198–210

    Article  PubMed  PubMed Central  Google Scholar 

  45. Grunfeld C et al (1991) Circulating interferon-alpha levels and hypertriglyceridemia in the acquired immunodeficiency syndrome. Am J Med 90(2):154–162

    Article  PubMed  CAS  Google Scholar 

  46. Grunfeld C et al (1992) Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J Clin Endocrinol Metab 74(5):1045–1052

    PubMed  CAS  Google Scholar 

  47. Husain NE, Ahmed MH (2015) Managing dyslipidemia in HIV/AIDS patients: challenges and solutions. HIV AIDS (Auckl) 7:1–10

    CAS  Google Scholar 

  48. Calvo M, Martinez E (2014) Update on metabolic issues in HIV patients. Curr Opin HIV AIDS 9(4):332–339

    Article  PubMed  Google Scholar 

  49. Calza L et al (2016) Clinical management of dyslipidaemia associated with combination antiretroviral therapy in HIV-infected patients. J Antimicrob Chemother 71(6):1451–1465

    Article  PubMed  CAS  Google Scholar 

  50. Chastain DB, Henderson H, Stover KR (2015) Epidemiology and management of antiretroviral-associated cardiovascular disease. Open AIDS J 9:23–37

    Article  PubMed  PubMed Central  Google Scholar 

  51. Eron JJ et al (2010) Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet 375(9712):396–407

    Article  PubMed  CAS  Google Scholar 

  52. Lennox JL et al (2010) Raltegravir versus efavirenz regimens in treatment-naive HIV-1-infected patients: 96-week efficacy, durability, subgroup, safety, and metabolic analyses. JAIDS 55(1):39–48

    PubMed  CAS  Google Scholar 

  53. Grunfeld C (2010) Dyslipidemia and its treatment in HIV infection. Top HIV Med 18(3):112–118

    PubMed  PubMed Central  Google Scholar 

  54. Mitka M (2015) Exploring statins to decrease HIV-related heart disease risk. JAMA 314(7):657–659

    Article  PubMed  Google Scholar 

  55. Nayor M, Vasan RS (2016) Recent update to the US Cholesterol Treatment Guidelines. A comparison with international guidelines. Circulation 133(18):1795–1806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Aberg JA et al (2014) Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the Infectious Diseases Society of America. Clin Infect Dis 58(1):e1–e34

    Article  PubMed  Google Scholar 

  57. Lichtenstein KA et al (2003) Incidence of and risk factors for lipoatrophy (abnormal fat loss) in ambulatory HIV-1-infected patients. J Acquir Immune Defic Syndr 32(1):48–56

    Article  PubMed  Google Scholar 

  58. Heath KV et al (2001) Lipodystrophy-associated morphological, cholesterol and triglyceride abnormalities in a population-based HIV/AIDS treatment database. AIDS 15(2):231–239

    Article  PubMed  CAS  Google Scholar 

  59. Lo JC et al (1998) Body shape changes in HIV-infected patients. J Acquir Immune Defic Syndr Hum Retrovirol 19(3):307–308

    Article  PubMed  CAS  Google Scholar 

  60. Leitz G, Robinson P (2000) The development of lipodystrophy on a protease inhibitor-sparing highly active antiretroviral therapy regimen. AIDS 14(4):468–469

    Article  PubMed  CAS  Google Scholar 

  61. Mynarcik DC et al (2000) Association of severe insulin resistance with both loss of limb fat and elevated serum tumor necrosis factor receptor levels in HIV lipodystrophy. J Acquir Immune Defic Syndr 25(4):312–321

    Article  PubMed  CAS  Google Scholar 

  62. Wohl D et al (2008) The associations of regional adipose tissue with lipid and lipoprotein levels in HIV-infected men. J Acquir Immune Defic Syndr 48(1):44–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Guaraldi G et al (2008) Severity of lipodystrophy is associated with decreased health-related quality of life. AIDS Patient Care STDS 22(7):577–585

    Article  PubMed  PubMed Central  Google Scholar 

  64. Reynolds NR et al (2006) Balancing disfigurement and fear of disease progression: patient perceptions of HIV body fat redistribution. AIDS Care 18(7):663–673

    Article  PubMed  CAS  Google Scholar 

  65. Tien PC, Grunfeld C (2004) What is HIV-associated lipodystrophy? Defining fat distribution changes in HIV infection. Curr Opin Infect Dis 17(1):27–32

    Article  PubMed  Google Scholar 

  66. Jacobson DL et al (2005) Prevalence of, evolution of, and risk factors for fat atrophy and fat deposition in a cohort of HIV-infected men and women. Clin Infect Dis 40(12):1837–1845

    Article  PubMed  Google Scholar 

  67. Lichtenstein KA et al (2001) Clinical assessment of HIV-associated lipodystrophy in an ambulatory population. AIDS 15(11):1389–1398

    Article  PubMed  CAS  Google Scholar 

  68. Miller J et al (2003) HIV lipodystrophy: prevalence, severity and correlates of risk in Australia. HIV Med 4(3):293–301

    Article  PubMed  CAS  Google Scholar 

  69. Montes AH et al (2010) The MMP1 (-16071G/2G) single nucleotide polymorphism associates with the HAART-related lipodystrophic syndrome. AIDS 24(16):2499–2506

    Article  PubMed  CAS  Google Scholar 

  70. Hulgan T et al (2011) European mitochondrial DNA haplogroups and metabolic changes during antiretroviral therapy in AIDS Clinical Trials Group Study A5142. AIDS 25(1):37–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Bogner JR et al (2001) Stavudine versus zidovudine and the development of lipodystrophy. J Acquir Immune Defic Syndr 27(3):237–244

    Article  PubMed  CAS  Google Scholar 

  72. Cherry CL et al (2006) Tissue-specific associations between mitochondrial DNA levels and current treatment status in HIV-infected individuals. J Acquir Immune Defic Syndr 42(4):435–440

    Article  PubMed  CAS  Google Scholar 

  73. Moyle GJ et al (2006) A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS 20(16):2043–2050

    Article  PubMed  CAS  Google Scholar 

  74. Martin A et al (2004) Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. AIDS 18(7):1029–1036

    Article  PubMed  CAS  Google Scholar 

  75. Loutfy MR et al (2007) Immediate versus delayed polyalkylimide gel injections to correct facial lipoatrophy in HIV-positive patients. AIDS 21(9):1147–1155

    Article  PubMed  CAS  Google Scholar 

  76. Moyle GJ et al (2006) Long-term safety and efficacy of poly-l-lactic acid in the treatment of HIV-related facial lipoatrophy. HIV Med 7(3):181–185

    Article  PubMed  CAS  Google Scholar 

  77. Mulligan K et al (2009) The effects of recombinant human leptin on visceral fat, dyslipidemia, and insulin resistance in patients with human immunodeficiency virus-associated lipoatrophy and hypoleptinemia. J Clin Endocrinol Metab 94(4):1137–1144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Magkos F et al (2011) Leptin replacement improves postprandial glycemia and insulin sensitivity in human immunodeficiency virus-infected lipoatrophic men treated with pioglitazone: a pilot study. Metabolism 60(7):1045–1049

    Article  PubMed  CAS  Google Scholar 

  79. Guaraldi G et al (2013) CD8 T-cell activation is associated with lipodystrophy and visceral fat accumulation in antiretroviral therapy-treated virologically suppressed HIV-infected patients. J Acquir Immune Defic Syndr 64(4):360–366

    Article  PubMed  CAS  Google Scholar 

  80. Damouche A et al (2015) Adipose tissue is a neglected viral reservoir and an inflammatory site during chronic HIV and SIV infection. PLoS Pathog 11(9):e1005153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Vidal F et al (2012) Adipogenic/lipid, inflammatory, and mitochondrial parameters in subcutaneous adipose tissue of untreated HIV-1-infected long-term nonprogressors: significant alterations despite low viral burden. J Acquir Immune Defic Syndr 61(2):131–137

    Article  PubMed  CAS  Google Scholar 

  82. Agarwal N, Balasubramanyam A (2015) Viral mechanisms of adipose dysfunction: lessons from HIV-1 Vpr. Adipocyte 4(1):55–59

    Article  PubMed  CAS  Google Scholar 

  83. Gerard P (2016) Gut microbiota and obesity. Cell Mol Life Sci 73(1):147–162

    Article  PubMed  CAS  Google Scholar 

  84. Rietschel P et al (2001) Assessment of growth hormone dynamics in human immunodeficiency virus-related lipodystrophy. J Clin Endocrinol Metab 86(2):504–510

    PubMed  CAS  Google Scholar 

  85. Lake JE, Currier JS (2013) Metabolic disease in HIV infection. Lancet Infect Dis 13(11):964–975

    Article  PubMed  Google Scholar 

  86. Caron-Debarle M et al (2010) Adipose tissue as a target of HIV-1 antiretroviral drugs. Potential consequences on metabolic regulations. Curr Pharm Des 16(30):3352–3360

    Article  PubMed  CAS  Google Scholar 

  87. Dube MP et al (2007) Long-term body fat outcomes in antiretroviral-naive participants randomized to nelfinavir or efavirenz or both plus dual nucleosides. Dual X-ray absorptiometry results from A5005S, a substudy of Adult Clinical Trials Group 384. J Acquir Immune Defic Syndr 45(5):508–514

    Article  PubMed  CAS  Google Scholar 

  88. Haubrich RH et al (2009) Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. AIDS 23(9):1109–1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Caron-Debarle M et al (2010) HIV-associated lipodystrophy: from fat injury to premature aging. Trends Mol Med 16(5):218–229

    Article  PubMed  CAS  Google Scholar 

  90. McComsey GA et al (2016) Body composition changes after initiation of raltegravir or protease inhibitors: ACTG A5260S. Clin Infect Dis 62(7):853–862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Moyle GJ et al (2014) Comparison of body composition changes between atazanavir/ritonavir and lopinavir/ritonavir each in combination with tenofovir/emtricitabine in antiretroviral-naive patients with HIV-1 infection. Clin Drug Investig 34(4):287–296

    Article  PubMed  CAS  Google Scholar 

  92. Vrouenraets SM et al (2011) Randomized comparison of metabolic and renal effects of saquinavir/r or atazanavir/r plus tenofovir/emtricitabine in treatment-naive HIV-1-infected patients. HIV Med 12(10):620–631

    Article  PubMed  CAS  Google Scholar 

  93. Scherzer R et al (2011) Decreased limb muscle and increased central adiposity are associated with 5-year all-cause mortality in HIV infection. AIDS 25(11):1405–1414

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dolan SE et al (2006) Effects of a supervised home-based aerobic and progressive resistance training regimen in women infected with human immunodeficiency virus: a randomized trial. Arch Intern Med 166(11):1225–1231

    Article  PubMed  PubMed Central  Google Scholar 

  95. Falutz J et al (2008) Long-term safety and effects of tesamorelin, a growth hormone-releasing factor analogue, in HIV patients with abdominal fat accumulation. AIDS 22(14):1719–1728

    Article  PubMed  CAS  Google Scholar 

  96. Falutz J et al (2007) Metabolic effects of a growth hormone-releasing factor in patients with HIV. N Engl J Med 357(23):2359–2370

    Article  PubMed  CAS  Google Scholar 

  97. Falutz J et al (2010) Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J Clin Endocrinol Metab 95(9):4291–4304

    Article  PubMed  CAS  Google Scholar 

  98. Brown TT, Glesby MJ (2011) Management of the metabolic effects of HIV and HIV drugs. Nat Rev Endocrinol 8(1):11–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Dobs AS et al (1988) Endocrine disorders in men infected with human immunodeficiency virus. Am J Med 84(3 Pt 2):611–616

    Article  PubMed  CAS  Google Scholar 

  100. Arver S et al (1999) Serum dihydrotestosterone and testosterone concentrations in human immunodeficiency virus-infected men with and without weight loss. J Androl 20(5):611–618

    PubMed  CAS  Google Scholar 

  101. Dacks JB, Peden AA, Field MC (2009) Evolution of specificity in the eukaryotic endomembrane system. Int J Biochem Cell Biol 41(2):330–340

    Article  PubMed  CAS  Google Scholar 

  102. Wong N, Levy M, Stephenson I (2017) Hypogonadism in the HIV-Infected Man. Curr Treat Options Infect Dis 9(1):104–116

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ashby J, Goldmeier D, Sadeghi-Nejad H (2014) Hypogonadism in human immunodeficiency virus-positive men. Korean J Urol 55(1):9–16

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rochira V et al (2011) Premature decline of serum total testosterone in HIV-infected men in the HAART-era. PLoS ONE 6(12):e28512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Rochira V, Guaraldi G (2014) Hypogonadism in the HIV-infected man. Endocrinol Metab Clin North Am 43(3):709–730

    Article  PubMed  Google Scholar 

  106. Khera M et al (2016) Adult-onset hypogonadism. Mayo Clin Proc 91(7):908–926

    Article  PubMed  Google Scholar 

  107. Kirk JB, Goetz MB (2009) Human immunodeficiency virus in an aging population, a complication of success. J Am Geriatr Soc 57(11):2129–2138

    Article  PubMed  Google Scholar 

  108. Aaltonen T et al (2012) Measurement of Bs0– > Ds(*) + Ds(*)- branching ratios. Phys Rev Lett 108(20):201801

    Article  PubMed  CAS  Google Scholar 

  109. Selvin E et al (2007) Androgens and diabetes in men: results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 30(2):234–238

    Article  PubMed  CAS  Google Scholar 

  110. Cubero JM et al (2011) Prevalence of metabolic syndrome among human immunodeficiency virus-infected subjects is widely influenced by the diagnostic criteria. Metab Syndr Relat Disord 9(5):345–351

    Article  PubMed  CAS  Google Scholar 

  111. Samaras K et al (2007) Prevalence of metabolic syndrome in HIV-infected patients receiving highly active antiretroviral therapy using International Diabetes Foundation and Adult Treatment Panel III criteria: associations with insulin resistance, disturbed body fat compartmentalization, elevated C-reactive protein, and (corrected) hypoadiponectinemia. Diabetes Care 30(1):113–119

    Article  PubMed  CAS  Google Scholar 

  112. Klein RS et al (2005) Androgen levels in older men who have or who are at risk of acquiring HIV infection. Clin Infect Dis 41(12):1794–1803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Roubenoff R et al (2002) Role of cytokines and testosterone in regulating lean body mass and resting energy expenditure in HIV-infected men. Am J Physiol Endocrinol Metab 283(1):E138–E145

    Article  PubMed  CAS  Google Scholar 

  114. Rochira V et al (2015) Low testosterone is associated with poor health status in men with human immunodeficiency virus infection: a retrospective study. Andrology 3(2):298–308

    Article  PubMed  CAS  Google Scholar 

  115. Collazos J (2007) Sexual dysfunction in the highly active antiretroviral therapy era. AIDS Rev 9(4):237–245

    PubMed  Google Scholar 

  116. Bhasin S et al (2010) Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 95(6):2536–2559

    Article  PubMed  CAS  Google Scholar 

  117. Clumeck N et al (2008) European AIDS Clinical Society (EACS) guidelines for the clinical management and treatment of HIV-infected adults. HIV Med 9(2):65–71

    Article  PubMed  CAS  Google Scholar 

  118. Rosner W et al (2007) Position statement: utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement. J Clin Endocrinol Metab 92(2):405–413

    Article  PubMed  CAS  Google Scholar 

  119. Ho CK et al (2006) Calculated free testosterone in men: comparison of four equations and with free androgen index. Ann Clin Biochem 43(Pt 5):389–397

    Article  PubMed  CAS  Google Scholar 

  120. Mondul AM et al (2005) Age at natural menopause and cause-specific mortality. Am J Epidemiol 162(11):1089–1097

    Article  PubMed  Google Scholar 

  121. Kanapathipillai R, Hickey M, Giles M (2013) Human immunodeficiency virus and menopause. Menopause 20(9):983–990

    Article  PubMed  Google Scholar 

  122. Schoenbaum EE et al (2005) HIV infection, drug use, and onset of natural menopause. Clin Infect Dis 41(10):1517–1524

    Article  PubMed  Google Scholar 

  123. Fantry LE et al (2005) Age of menopause and menopausal symptoms in HIV-infected women. AIDS Patient Care STDS 19(11):703–711

    Article  PubMed  Google Scholar 

  124. Miller SA et al (2005) Menopause symptoms in HIV-infected and drug-using women. Menopause 12(3):348–356

    Article  PubMed  Google Scholar 

  125. Brown TT, Qaqish RB (2006) Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20(17):2165–2174

    Article  PubMed  Google Scholar 

  126. McComsey GA et al (2010) Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis 51(8):937–946

    Article  PubMed  PubMed Central  Google Scholar 

  127. Triant VA et al (2008) Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab 93(9):3499–3504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Young B et al (2011) Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000–2006. Clin Infect Dis 52(8):1061–1068

    Article  PubMed  Google Scholar 

  129. Santi D et al (2016) Serum total estradiol, but not testosterone is associated with reduced bone mineral density (BMD) in HIV-infected men: a cross-sectional, observational study. Osteoporos Int 27(3):1103–1114

    Article  PubMed  CAS  Google Scholar 

  130. Brown TT et al (2015) Recommendations for evaluation and management of bone disease in HIV. Clin Infect Dis 60(8):1242–1251

    Article  PubMed  PubMed Central  Google Scholar 

  131. Fakruddin JM, Laurence J (2003) HIV envelope gp120-mediated regulation of osteoclastogenesis via receptor activator of nuclear factor kappa B ligand (RANKL) secretion and its modulation by certain HIV protease inhibitors through interferon-gamma/RANKL cross-talk. J Biol Chem 278(48):48251–48258

    Article  PubMed  CAS  Google Scholar 

  132. Gazzola L et al (2013) Association between peripheral T-lymphocyte activation and impaired bone mineral density in HIV-infected patients. J Transl Med 11:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Brown TT et al (2009) Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr 51(5):554–561

    Article  PubMed  CAS  Google Scholar 

  134. Paccou J et al (2009) Bone loss in patients with HIV infection. Joint Bone Spine 76(6):637–641

    Article  PubMed  Google Scholar 

  135. Maalouf NM et al (2013) Hepatitis C co-infection and severity of liver disease as risk factors for osteoporotic fractures among HIV-infected patients. J Bone Miner Res 28(12):2577–2583

    Article  PubMed  Google Scholar 

  136. El-Maouche D et al (2011) Controlled HIV viral replication, not liver disease severity associated with low bone mineral density in HIV/HCV co-infection. J Hepatol 55(4):770–776

    Article  PubMed  PubMed Central  Google Scholar 

  137. Eckard AR, McComsey GA (2014) Vitamin D deficiency and altered bone mineral metabolism in HIV-infected individuals. Curr HIV/AIDS Rep 11(3):263–270

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lo Re V et al (2012) Risk of hip fracture associated with hepatitis C virus infection and hepatitis C/human immunodeficiency virus coinfection. Hepatology 56(5):1688–1698

    Article  PubMed  Google Scholar 

  139. Gilsanz V et al (2009) Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab 94(9):3387–3393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Clerici M, Shearer GM (1993) A TH1→TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 14(3):107–111

    Article  PubMed  CAS  Google Scholar 

  141. Chew N et al (2014) HIV-1 tat and rev upregulates osteoclast bone resorption. J Int AIDS Soc 17(4 Suppl 3):19724

    Article  PubMed  PubMed Central  Google Scholar 

  142. Panayiotopoulos A, Bhat N, Bhangoo A (2013) Bone and vitamin D metabolism in HIV. Rev Endocr Metab Disord 14(2):119–125

    Article  PubMed  CAS  Google Scholar 

  143. Fakruddin JM, Laurence J (2004) Interactions among human immunodeficiency virus (HIV)-1, interferon-gamma and receptor of activated NF-kappa B ligand (RANKL): implications for HIV pathogenesis. Clin Exp Immunol 137(3):538–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Rosen CJ, Klibanski A (2009) Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am J Med 122(5):409–414

    Article  PubMed  CAS  Google Scholar 

  145. Huang JS et al (2013) Bone mineral density effects of randomized regimen and nucleoside reverse transcriptase inhibitor selection from ACTG A5142. HIV Clin Trials 14(5):224–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Schafer JJ, Manlangit K, Squires KE (2013) Bone health and human immunodeficiency virus infection. Pharmacotherapy 33(6):665–682

    Article  PubMed  Google Scholar 

  147. Mateo L et al (2016) Hypophosphatemic osteomalacia induced by tenofovir in HIV-infected patients. Clin Rheumatol 35(5):1271–1279

    Article  PubMed  Google Scholar 

  148. Sax PE et al (2015) Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: two randomised, double-blind, phase 3, non-inferiority trials. Lancet 385(9987):2606–2615

    Article  PubMed  CAS  Google Scholar 

  149. Brown TT et al (2015) Changes in bone mineral density after initiation of antiretroviral treatment with tenofovir disoproxil fumarate/emtricitabine plus atazanavir/ritonavir, darunavir/ritonavir, or raltegravir. J Infect Dis 212(8):1241–1249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Ofotokun I et al (2016) Antiretroviral therapy induces a rapid increase in bone resorption that is positively associated with the magnitude of immune reconstitution in HIV infection. AIDS 30(3):405–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Mazzotta E et al (2015) Prevalence and predictors of low bone mineral density and fragility fractures among HIV-infected patients at one Italian center after universal DXA screening: sensitivity and specificity of current guidelines on bone mineral density management. AIDS Patient Care STDS 29(4):169–180

    Article  PubMed  Google Scholar 

  152. Brown TT (2013) Challenges in the management of osteoporosis and vitamin D deficiency in HIV infection. Top Antivir Med 21(3):115–118

    PubMed  Google Scholar 

  153. Force, U.S.P.S.T. (2011) Screening for osteoporosis: U.S. preventive services task force recommendation statement. Ann Intern Med 154(5):356–364

    Article  Google Scholar 

  154. Bloch M et al (2014) Switch from tenofovir to raltegravir increases low bone mineral density and decreases markers of bone turnover over 48 weeks. HIV Med 15(6):373–380

    Article  PubMed  CAS  Google Scholar 

  155. Negredo E et al (2014) Improvement in bone mineral density after switching from tenofovir to abacavir in HIV-1-infected patients with low bone mineral density: two-centre randomized pilot study (OsteoTDF study). J Antimicrob Chemother 69(12):3368–3371

    Article  PubMed  CAS  Google Scholar 

  156. Guaraldi G et al (2004) Alendronate reduces bone resorption in HIV-associated osteopenia/osteoporosis. HIV Clin Trials 5(5):269–277

    Article  PubMed  CAS  Google Scholar 

  157. Mondy K et al (2005) Alendronate, vitamin D, and calcium for the treatment of osteopenia/osteoporosis associated with HIV infection. J Acquir Immune Defic Syndr 38(4):426–431

    Article  PubMed  CAS  Google Scholar 

  158. McComsey GA et al (2007) Alendronate with calcium and vitamin D supplementation is safe and effective for the treatment of decreased bone mineral density in HIV. AIDS 21(18):2473–2482

    Article  PubMed  CAS  Google Scholar 

  159. Negredo E et al (2015) Comparison of two different strategies of treatment with zoledronate in HIV-infected patients with low bone mineral density: single dose versus two doses in 2 years. HIV Med 16(7):441–448

    Article  PubMed  CAS  Google Scholar 

  160. Bolland MJ et al (2012) Effects of intravenous zoledronate on bone turnover and bone density persist for at least five years in HIV-infected men. J Clin Endocrinol Metab 97(6):1922–1928

    Article  PubMed  CAS  Google Scholar 

  161. Ofotokun I et al (2016) A single-dose zoledronic acid infusion prevents antiretroviral therapy-induced bone loss in treatment-naive HIV-infected patients: a phase IIb trial. Clin Infect Dis 63(5):663–671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Pinzone MR et al (2014) Is there enough evidence to use bisphosphonates in HIV-infected patients? A systematic review and meta-analysis. AIDS Rev 16(4):213–222

    PubMed  Google Scholar 

  163. Hoffmann CJ, Brown TT (2007) Thyroid function abnormalities in HIV-infected patients. Clin Infect Dis 45(4):488–494

    Article  PubMed  Google Scholar 

  164. Ji S et al (2016) Prevalence and influencing factors of thyroid dysfunction in HIV-infected patients. Biomed Res Int 2016:3874257

    PubMed  PubMed Central  Google Scholar 

  165. Grappin M et al (2000) Increased prevalence of subclinical hypothyroidism in HIV patients treated with highly active antiretroviral therapy. AIDS 14(8):1070–1072

    Article  PubMed  CAS  Google Scholar 

  166. Collazos J, Ibarra S, Mayo J (2003) Thyroid hormones in HIV-infected patients in the highly active antiretroviral therapy era: evidence of an interrelation between the thyroid axis and the immune system. AIDS 17(5):763–765

    Article  PubMed  Google Scholar 

  167. Garber JR et al (2012) Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid 22(12):1200–1235

    Article  PubMed  CAS  Google Scholar 

  168. French MA (2009) HIV/AIDS: immune reconstitution inflammatory syndrome: a reappraisal. Clin Infect Dis 48(1):101–107

    Article  PubMed  Google Scholar 

  169. Madeddu G et al (2006) Thyroid function in human immunodeficiency virus patients treated with highly active antiretroviral therapy (HAART): a longitudinal study. Clin Endocrinol (Oxf) 64(4):375–383

    CAS  Google Scholar 

  170. Jubault V et al (2000) Sequential occurrence of thyroid autoantibodies and Graves’ disease after immune restoration in severely immunocompromised human immunodeficiency virus-1-infected patients. J Clin Endocrinol Metab 85(11):4254–4257

    PubMed  CAS  Google Scholar 

  171. Bahn RS et al (2011) Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Endocr Pract 17(3):456–520

    Article  PubMed  Google Scholar 

  172. Welch K et al (1984) Autopsy findings in the acquired immune deficiency syndrome. JAMA 252(9):1152–1159

    Article  PubMed  CAS  Google Scholar 

  173. Sawaya BE et al (2000) Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. J Biol Chem 275(45):35209–35214

    Article  PubMed  CAS  Google Scholar 

  174. Kino T et al (1999) The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor. J Exp Med 189(1):51–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Norbiato G et al (1992) Cortisol resistance in acquired immunodeficiency syndrome. J Clin Endocrinol Metab 74(3):608–613

    PubMed  CAS  Google Scholar 

  176. Raffi F et al (1991) Endocrine function in 98 HIV-infected patients: a prospective study. AIDS 5(6):729–733

    Article  PubMed  CAS  Google Scholar 

  177. Biglino A et al (1995) Altered adrenocorticotropin and cortisol response to corticotropin-releasing hormone in HIV-1 infection. Eur J Endocrinol 133(2):173–179

    Article  PubMed  CAS  Google Scholar 

  178. Verges B et al (1989) Adrenal function in HIV infected patients. Acta Endocrinol (Copenh) 121(5):633–637

    Article  CAS  Google Scholar 

  179. Glasgow BJ et al (1985) Adrenal pathology in the acquired immune deficiency syndrome. Am J Clin Pathol 84(5):594–597

    Article  PubMed  CAS  Google Scholar 

  180. Baker R, Rook GA, Zumla A (1997) Adrenal function and the hypothalamo-pituitary adrenal axis in immunodeficiency virus-associated tuberculosis. Int J Tuberc Lung Dis 1(3):289–290

    Article  PubMed  CAS  Google Scholar 

  181. Arabi Y et al (1996) Adrenal insufficiency, recurrent bacteremia, and disseminated abscesses caused by Nocardia asteroides in a patient with acquired immunodeficiency syndrome. Diagn Microbiol Infect Dis 24(1):47–51

    Article  PubMed  CAS  Google Scholar 

  182. Schwartz LJ et al (1991) Endocrine function in children with human immunodeficiency virus infection. Am J Dis Child 145(3):330–333

    PubMed  CAS  Google Scholar 

  183. Radin DR et al (1993) AIDS-related non-Hodgkin’s lymphoma: abdominal CT findings in 112 patients. AJR Am J Roentgenol 160(5):1133–1139

    Article  PubMed  CAS  Google Scholar 

  184. Tappero JW et al (1993) Kaposi’s sarcoma. Epidemiology, pathogenesis, histology, clinical spectrum, staging criteria and therapy. J Am Acad Dermatol 28(3):371–395

    Article  PubMed  CAS  Google Scholar 

  185. Eledrisi MS, Verghese AC (2001) Adrenal insufficiency in HIV infection: a review and recommendations. Am J Med Sci 321(2):137–144

    Article  PubMed  CAS  Google Scholar 

  186. Mann M et al (1997) Glucocorticoidlike activity of megestrol. A summary of Food and Drug Administration experience and a review of the literature. Arch Intern Med 157(15):1651–1656

    Article  PubMed  CAS  Google Scholar 

  187. Subramanian S et al (1997) Clinical adrenal insufficiency in patients receiving megestrol therapy. Arch Intern Med 157(9):1008–1011

    Article  PubMed  CAS  Google Scholar 

  188. Putignano P et al (1998) The effects of anti-convulsant drugs on adrenal function. Horm Metab Res 30(6–7):389–397

    Article  PubMed  CAS  Google Scholar 

  189. Foisy MM et al (2008) Adrenal suppression and Cushing’s syndrome secondary to an interaction between ritonavir and fluticasone: a review of the literature. HIV Med 9(6):389–396

    Article  PubMed  CAS  Google Scholar 

  190. Prasanthai V et al (2007) Prevalence of adrenal insufficiency in critically ill patients with AIDS. J Med Assoc Thai 90(9):1768–1774

    PubMed  Google Scholar 

  191. Chrousos GP, Zapanti ED (2014) Hypothalamic-pituitary-adrenal axis in HIV infection and disease. Endocrinol Metab Clin North Am 43(3):791–806

    Article  PubMed  Google Scholar 

  192. Kyriazopoulou V, Parparousi O, Vagenakis AG (1984) Rifampicin-induced adrenal crisis in addisonian patients receiving corticosteroid replacement therapy. J Clin Endocrinol Metab 59(6):1204–1206

    Article  PubMed  CAS  Google Scholar 

  193. Rochira V, Guaraldi G (2017) Growth hormone deficiency and human immunodeficiency virus. Best Pract Res Clin Endocrinol Metab 31(1):91–111

    Article  PubMed  CAS  Google Scholar 

  194. Falutz J et al (2005) A placebo-controlled, dose-ranging study of a growth hormone releasing factor in HIV-infected patients with abdominal fat accumulation. AIDS 19(12):1279–1287

    Article  PubMed  CAS  Google Scholar 

  195. Stanley TL et al (2014) Effect of tesamorelin on visceral fat and liver fat in HIV-infected patients with abdominal fat accumulation: a randomized clinical trial. JAMA 312(4):380–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Ram S et al (2004) Serum prolactin in human immunodeficiency virus infection. Clin Lab 50(9–10):617–620

    PubMed  CAS  Google Scholar 

  197. Hutchinson J et al (2000) Galactorrhoea and hyperprolactinaemia associated with protease-inhibitors. Lancet 356(9234):1003–1004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Ernesto Canalis and Ms. Mary Yurczak for their support of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Mirza.

Ethics declarations

Conflict of interest

The authors do not have any disclosures.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirza, F.S., Luthra, P. & Chirch, L. Endocrinological aspects of HIV infection. J Endocrinol Invest 41, 881–899 (2018). https://doi.org/10.1007/s40618-017-0812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0812-x

Keywords

  • Human immunodeficiency virus
  • Antiretroviral therapy
  • Endocrinopathy
  • Bone disease
  • Lipodystrophy
  • Diabetes
  • Hyperlipidemia