Skip to main content
Log in

High-resolution melting analysis (HRM) for mutational screening of Dnajc17 gene in patients affected by thyroid dysgenesis

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

Congenital hypothyroidism is a frequent disease occurring with an incidence of about 1/1500 newborns/year. In about 75% of the cases, CH is caused by alterations in thyroid morphogenesis, defined “thyroid dysgenesis” (TD). TD is generally a sporadic disease but in about 5% of the cases a genetic origin has been demonstrated. Previous studies indicate that Dnajc17 as a candidate modifier gene for hypothyroidism, since it is expressed in the thyroid bud, interacts with NKX2.1 and PAX8 and it has been associated to the hypothyroid phenotype in mice carrying a single Nkx2.1 and Pax8 genes (double heterozygous knock-out).

Purpose

The work evaluates the possible involvement of DNAJC17 in the pathogenesis of TD.

Methods

High-resolution DNA melting analysis (HRM) and direct sequencing have been used to screen for mutations in the DNAJC17 coding sequence in 89 patients with TD.

Results

Two mutations have been identified in the coding sequence of DNAJC17 gene, one in exon 5 (c.350A>C; rs79709714) and one in exon 9 (c.610G>C; rs117485355). The last one is a rare variant, while the rs79709714 is a polymorphism. Both are present in databases and the frequency of the alleles is not different between TD patients and controls.

Conclusions

DNAJC17 mutations are not frequently present in patients with TD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LaFranchi S (1999) Congenital hypothyroidism: etiologies, diagnosis, and management. Thyroid: Off J Am Thyroid Assoc 9(7):735–740

    Article  CAS  Google Scholar 

  2. Corbetta C, Weber G, Cortinovis F, Calebiro D, Passoni A, Vigone MC, Beck-Peccoz P, Chiumello G, Persani L (2009) A 7-year experience with low blood TSH cutoff levels for neonatal screening reveals an unsuspected frequency of congenital hypothyroidism (CH). Clin Endocrinol 71(5):739–745. https://doi.org/10.1111/j.1365-2265.2009.03568.x

    Article  CAS  Google Scholar 

  3. Macchia PE, De Felice M, Di Lauro R (1999) Molecular genetics of congenital hypothyrodism. Curr Opin Genet Dev 9:289–294

    Article  PubMed  CAS  Google Scholar 

  4. Nettore I, Cacace V, De Fusco C, Colao A, Macchia P (2013) The molecular causes of thyroid dysgenesis: a systematic review. J Endocrinol Investig 36(8):654–664. https://doi.org/10.3275/8973

    Article  CAS  Google Scholar 

  5. Nettore IC, Mirra P, Ferrara A, Sibilio A, Pagliara V, Kay C, Lorenzoni P, Werneck L, Bruck I, Dos Santos L, Beguinot F, Salvatore D, Ungaro P, Fenzi G, Scola R, Macchia PE (2013) Identification and functional characterization of a novel mutation in the NKX2-1 gene: comparison with the data in the literature. Thyroid: Off J Am Thyroid Assoc 23(6):675–682. https://doi.org/10.1089/thy.2012.0267

    Article  CAS  Google Scholar 

  6. Fernandez LP, Lopez-Marquez A, Santisteban P (2015) Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol 11(1):29–42. https://doi.org/10.1038/nrendo.2014.186

    Article  PubMed  CAS  Google Scholar 

  7. Srichomkwun P, Admoni O, Refetoff S, de Vries L (2016) A novel mutation (S54C) of the PAX8 gene in a family with congenital hypothyroidism and a high proportion of affected individuals. Horm Res Paediatr 86(2):137–142. https://doi.org/10.1159/000445891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pohlenz J, Van Vliet G, Deladoëy J (2016) Developmental abnormalities of the thyroid. In: Weiss RE, Refefoff S (eds) Genetic diagnosis of endocrine disorders, 2nd edn. Academic Press, San Diego, pp 127–136. https://doi.org/10.1016/B978-0-12-800892-8.00008-7

    Chapter  Google Scholar 

  9. De Felice M, Di Lauro R (2004) Thyroid development and its disorders: genetics and molecular mechanisms. Endocr Rev 25(5):722–746. https://doi.org/10.1210/er.2003-0028

    Article  PubMed  CAS  Google Scholar 

  10. Marelli F, Persani L (2017) Role of Jagged1-Notch pathway in thyroid development. J Endocrinol Invest. https://doi.org/10.1007/s40618-017-0715-x

    Article  PubMed  Google Scholar 

  11. Amendola E, De Luca P, Macchia PE, Terracciano D, Rosica A, Chiappetta G, Kimura S, Mansouri A, Affuso A, Arra C, Macchia V, Di Lauro R, De Felice M (2005) A mouse model demonstrates a multigenic origin of congenital hypothyroidism. Endocrinology 146(12):5038–5047

    Article  PubMed  CAS  Google Scholar 

  12. Amendola E, Sanges R, Galvan A, Dathan N, Manenti G, Ferrandino G, Alvino FM, Di Palma T, Scarfo M, Zannini M, Dragani TA, De Felice M, Di Lauro R (2010) A locus on mouse chromosome 2 is involved in susceptibility to congenital hypothyroidism and contains an essential gene expressed in thyroid. Endocrinology 151(4):1948–1958. https://doi.org/10.1210/en.2009-1240

    Article  PubMed  CAS  Google Scholar 

  13. Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63(22):2560–2570. https://doi.org/10.1007/s00018-006-6192-6

    Article  PubMed  CAS  Google Scholar 

  14. Freeman BC, Yamamoto KR (2002) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296(5576):2232–2235. https://doi.org/10.1126/science.1073051

    Article  PubMed  CAS  Google Scholar 

  15. Macchia PE, Mattei M, Lapi P, Fenzi G, Di Lauro R (1999) Cloning, chromosomal localization and identification of polymorphisms in the human thyroid transcription factor 2 gene (TITF2). Biochimie 81:433–440

    Article  PubMed  CAS  Google Scholar 

  16. Dentice M, Cordeddu V, Rosica A, Ferrara A, Santarpia L, Salvatore D, Chiovato L, Perri A, Moschini L, Fazzini C, Olivieri A, Costa P, Stoppioni V, Baserga M, De Felice M, Sorcini M, Fenzi G, Di Lauro R, Tartaglia M, Macchia PE (2006) Missense mutation in the transcription factor NKX2-5: a novel molecular event in the pathogenesis of thyroid dysgenesis. J Clin Endocrinol Metab 91(4):1428–1433. https://doi.org/10.1210/jc.2005-1350

    Article  PubMed  CAS  Google Scholar 

  17. Nettore IC, Ferrara A, Mirra P, Sibilio A, Pagliara V, Kamoi Kay C, Lorenzoni P, Werneck L, Bruck I, Coutinho Dos Santos L, Beguinot F, Salvatore D, Ungaro P, Fenzi G, Scola R, Macchia PE (2013) Identification and functional characterization of a novel mutation in the NKX2-1 gene: comparison with the data in the literature. Thyroid: Off J Am Thyroid Assoc. https://doi.org/10.1089/thy.2012.0267

    Article  Google Scholar 

  18. Macchia PE, Lapi P, Krude H, Pirro M, Missero C, Chiovato L, Souabni A, Baserga M, Tassi V, Pinchera A, Fenzi G, Gruters A, Busslinger M, Di Lauro R (1998) PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat Genet 19(1):83–86

    Article  PubMed  CAS  Google Scholar 

  19. Camilot M, Teofoli F, Gandini A, Franceschi R, Rapa A, Corrias A, Bona G, Radetti G, Tato L (2005) Thyrotropin receptor gene mutations and TSH resistance: variable expressivity in the heterozygotes. Clin Endocrinol 63(2):146–151. https://doi.org/10.1111/j.1365-2265.2005.02314.x

    Article  CAS  Google Scholar 

  20. Ferrara AM, De Michele G, Salvatore E, Di Maio L, Zampella E, Capuano S, Del Prete G, Rossi G, Fenzi G, Filla A, Macchia PE (2008) A novel NKX2.1 mutation in a family with hypothyroidism and benign hereditary chorea. Thyroid 18(9):1005–1009. https://doi.org/10.1089/thy.2008.0085

    Article  PubMed  CAS  Google Scholar 

  21. Peng T, Wang L, Zhou SF, Li X (2010) Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genetica 138(11–12):1231–1240. https://doi.org/10.1007/s10709-010-9522-4

    Article  PubMed  CAS  Google Scholar 

  22. Cao Y, Lan W, Li Y, Wei C, Zou H, Jiang L (2015) Single nucleotide polymorphism of NKX2-5 gene with sporadic congenital heart disease in Chinese Bai population. Int J Clin Exp Pathol 8(11):14917–14924

    PubMed  PubMed Central  Google Scholar 

  23. Carre A, Stoupa A, Kariyawasam D, Gueriouz M, Ramond C, Monus T, Leger J, Gaujoux S, Sebag F, Glaser N, Zenaty D, Nitschke P, Bole-Feysot C, Hubert L, Lyonnet S, Scharfmann R, Munnich A, Besmond C, Taylor W, Polak M (2017) Mutations in BOREALIN cause thyroid dysgenesis. Hum Mol Genet 26(3):599–610. https://doi.org/10.1093/hmg/ddw419

    Article  PubMed  CAS  Google Scholar 

  24. de Filippis T, Gelmini G, Paraboschi E, Vigone MC, Di Frenna M, Marelli F, Bonomi M, Cassio A, Larizza D, Moro M, Radetti G, Salerno M, Ardissino D, Weber G, Gentilini D, Guizzardi F, Duga S, Persani L (2017) A frequent oligogenic involvement in congenital hypothyroidism. Hum Mol Genet 26(13):2507–2514. https://doi.org/10.1093/hmg/ddx145

    Article  PubMed  CAS  Google Scholar 

  25. Ferrara AM, Rossi G, Zampella E, Di Candia S, Pagliara V, Nettore I, Capalbo D, De Sanctis L, Baserga M, Salerno M, Fenzi G, Macchia PE (2011) Screening for mutations in the ISL1 gene in patients with thyroid dysgenesis. J Endocrinol Invest 34(7):e149–e152. https://doi.org/10.3275/7331

    Article  PubMed  CAS  Google Scholar 

  26. Abu-Khudir R, Paquette J, Lefort A, Libert F, Chanoine JP, Vassart G, Deladoey J (2010) Transcriptome, methylome and genomic variations analysis of ectopic thyroid glands. PLoS ONE 5(10):e13420. https://doi.org/10.1371/journal.pone.0013420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Thorwarth A, Mueller I, Biebermann H, Ropers HH, Grueters A, Krude H, Ullmann R (2010) Screening chromosomal aberrations by array comparative genomic hybridization in 80 patients with congenital hypothyroidism and thyroid dysgenesis. J Clin Endocrinol Metab 95(7):3446–3452. https://doi.org/10.1210/jc.2009-2195

    Article  PubMed  CAS  Google Scholar 

  28. Kuhnen P, Turan S, Frohler S, Guran T, Abali S, Biebermann H, Bereket A, Gruters A, Chen W, Krude H (2014) Identification of PENDRIN (SLC26A4) mutations in patients with congenital hypothyroidism and “apparent” thyroid dysgenesis. J Clin Endocrinol Metab 99(1):E169–E176. https://doi.org/10.1210/jc.2013-2619

    Article  PubMed  Google Scholar 

  29. Lof C, Patyra K, Kuulasmaa T, Vangipurapu J, Undeutsch H, Jaeschke H, Pajunen T, Kero A, Krude H, Biebermann H, Kleinau G, Kuhnen P, Rantakari K, Miettinen P, Kirjavainen T, Pursiheimo JP, Mustila T, Jaaskelainen J, Ojaniemi M, Toppari J, Ignatius J, Laakso M, Kero J (2016) Detection of novel gene variants associated with congenital hypothyroidism in a finnish patient cohort. Thyroid: Off J Am Thyroid Assoc 26(9):1215–1224. https://doi.org/10.1089/thy.2016.0016

    Article  CAS  Google Scholar 

  30. Nicholas AK, Serra EG, Cangul H, Alyaarubi S, Ullah I, Schoenmakers E, Deeb A, Habeb AM, Almaghamsi M, Peters C, Nathwani N, Aycan Z, Saglam H, Bober E, Dattani M, Shenoy S, Murray PG, Babiker A, Willemsen R, Thankamony A, Lyons G, Irwin R, Padidela R, Tharian K, Davies JH, Puthi V, Park SM, Massoud AF, Gregory JW, Albanese A, Pease-Gevers E, Martin H, Brugger K, Maher ER, Chatterjee VK, Anderson CA, Schoenmakers N (2016) Comprehensive screening of eight known causative genes in congenital hypothyroidism with gland-in-situ. J Clin Endocrinol Metab 101(12):4521–4531. https://doi.org/10.1210/jc.2016-1879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Er TK, Chang JG (2012) High-resolution melting: applications in genetic disorders. Clinica Chimica Acta Int J Clin Chem 414:197–201. https://doi.org/10.1016/j.cca.2012.09.012

    Article  CAS  Google Scholar 

  32. Sharma K, Sharma M, Singh S, Modi M, Sharma A, Ray P, Varma S (2017) Real-time PCR followed by high-resolution melting curve analysis: a rapid and pragmatic approach for screening of multidrug-resistant extrapulmonary tuberculosis. Tuberculosis 106:56–61. https://doi.org/10.1016/j.tube.2017.07.002

    Article  PubMed  CAS  Google Scholar 

  33. Charoenkwan P, Sirichotiyakul S, Phusua A, Suanta S, Fanhchaksai K, Sae-Tung R, Sanguansermsri T (2017) High-resolution melting analysis for prenatal diagnosis of beta-thalassemia in northern Thailand. Int J Hematol. https://doi.org/10.1007/s12185-017-2306-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by a grant from the Italian Ministry for University and Research (PRIN 2012 to PEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Macchia.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported. The authors declare no support from any commercial organization for the submitted work.

Ethical approval

The work has been performed according to the ethical standards.

Informed Consent

Informed consent was obtained from all individuals, patients or their parents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nettore, I.C., Desiderio, S., De Nisco, E. et al. High-resolution melting analysis (HRM) for mutational screening of Dnajc17 gene in patients affected by thyroid dysgenesis. J Endocrinol Invest 41, 711–717 (2018). https://doi.org/10.1007/s40618-017-0795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0795-7

Keywords

Navigation