Advertisement

Journal of Endocrinological Investigation

, Volume 41, Issue 4, pp 411–419 | Cite as

Effects of tetramethylpyrazine phosphate on pancreatic islet microcirculation in SD rats

  • X. Xu
  • L. Wu
  • Z. Q. Lu
  • P. Xia
  • X. P. Zhu
  • X. Gao
Original Article
  • 96 Downloads

Abstract

Purposes

Abnormal islet microcirculation impetus the insulin production and accelerates progression of Type 1 and 2 diabetes. In this study, we investigated whether tetramethylpyrazine phosphate (TMPP), a vasoactive substance, could regulate the islet microcirculation and insulin concentration and improve glycaemia in SD rats.

Methods

SD rats were randomly divided into two groups, the control and TMPP groups. Each group was further divided into three subgroups according to the intravenous injection of either saline, 15 or 30% glucose. The non-radioactive microsphere technique was adopted to measure the organ blood flow. Nitric oxide synthase (NOS) blocker l-NAME was used to address whether NO was involved in mediating the vasoactive effects of TMPP.

Results

In the TMPP group, TMPP increased the PBF (pancreatic blood flow), IBF (islet blood flow), and fIBF (fraction of islet blood flow out of pancreatic blood flow) by 57, 76 and 47%, respectively, after 30% glucose infusion, compared with the control, indicating that TMPP could regulate islet microcirculation. Furthermore, TMPP induced a 66% elevation of IBF and 37% of fIBF in the 30% glucose subgroups than the 15% ones. In 30% glucose-treated subgroups, TMPP improved the blood glucose concentration by 10%, compared with the control (19.3 ± 0.64 vs 17.32 ± 0.56 mmol/l, P < 0.05), without influencing the insulin secretion. Blocking NO formation prevented the enhanced PBF and IBF, evoking by TMPP with 30% glucose.

Conclusions

TMPP can regulate the pancreatic islet microcirculation and possess a hypoglycemia effect after glucose infusion through affecting the islet microcirculation.

Keywords

TMPP Islet microcirculation The non-radioactive microsphere technique 

Notes

Acknowledgements

The work was supported by Grants of the Shanghai Municipal Health Project grant (Grant no. 2013ZYJB0802 to Xin Gao) and Shanghai Health and Family Planning Commission Foundation (Grant nos. 12GWZX0103 and 2013SY005 to Xin Gao). The author sincerely thanks the central Laboratory of Zhongshan Hospital and Institute of chronic metabolic diseases of Fudan University.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Technical Department. The animal protocol was reviewed and approved by The Animal Ethics Committee of Zhongshan Hospital, Fudan University. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Jansson L (1994) The regulation of pancreatic islet blood flow. Diabetes Metab Rev 10(4):407–416CrossRefPubMedGoogle Scholar
  2. 2.
    Sjoholm A, Nystrom T (2006) Inflammation and the etiology of type 2 diabetes. Diabetes/Metab Res Rev 22(1):4–10. doi: 10.1002/dmrr.568 CrossRefGoogle Scholar
  3. 3.
    Iwase M, Sandler S, Carlsson PO, Hellerstrom C, Jansson L (2001) The pancreatic islets in spontaneously hypertensive rats: islet blood flow and insulin production. Eur J Endocrinol/Eur Fed Endocr Soc 144(2):169–178CrossRefGoogle Scholar
  4. 4.
    Svensson AM, Abdel-Halim SM, Efendic S, Jansson L, Ostenson CG (1994) Pancreatic and islet blood flow in F1-hybrids of the non-insulin-dependent diabetic GK-Wistar rat. Eur J Endocrinol/Eur Fed Endocr Soc 130(6):612–616CrossRefGoogle Scholar
  5. 5.
    Svensson AM, Ostenson CG, Efendic S, Jansson L (2007) Effects of glucagon-like peptide-1-(7-36)-amide on pancreatic islet and intestinal blood perfusion in Wistar rats and diabetic GK rats. Clin sci 112(6):345–351. doi: 10.1042/cs20060272 CrossRefPubMedGoogle Scholar
  6. 6.
    Yu DQLX, Li X (2004) Effect and safety of a traditional Chinese medicine prescription on urine albumin excreting rate in type 2 diabetic patients. Shanghai Med J 27(7):466–469Google Scholar
  7. 7.
    Zhang BGX, Li X (2005) Antioxidant capacity of a prescribed Chinese traditional medicine preparation and its effects on microvascular endothelial cells in high glucose milieu. Diabetologia 48:A289 (Abstract) Google Scholar
  8. 8.
    Kang Y, Hu M, Zhu Y, Gao X, Wang MW (2009) Antioxidative effect of the herbal remedy Qin Huo Yi Hao and its active component tetramethylpyrazine on high glucose-treated endothelial cells. Life Sci 84(13–14):428–436. doi: 10.1016/j.lfs.2009.01.003 CrossRefPubMedGoogle Scholar
  9. 9.
    Qian W, Xiong X, Fang Z, Lu H, Wang Z (2014) Protective effect of tetramethylpyrazine on myocardial ischemia-reperfusion injury. Evid Based complement Altern Med 2014:107501. doi: 10.1155/2014/107501 CrossRefGoogle Scholar
  10. 10.
    Zhang H, Sun R, Liu XY, Shi XM, Wang WF, Yu LG, Guo XL (2014) A tetramethylpyrazine piperazine derivate CXC137 prevents cell injury in SH-SY5Y cells and improves memory dysfunction of rats with vascular Dementia. Neurochem Res 39(2):276–286. doi: 10.1007/s11064-013-1219-5 CrossRefPubMedGoogle Scholar
  11. 11.
    Sun Y, Yu P, Zhang G, Wang L, Zhong H, Zhai Z, Wang L, Wang Y (2012) Therapeutic effects of tetramethylpyrazine nitrone in rat ischemic stroke models. J Neurosci Res 90(8):1662–1669. doi: 10.1002/jnr.23034 CrossRefPubMedGoogle Scholar
  12. 12.
    Dai XZ, Bache RJ (1985) Coronary and systemic hemodynamic effects of tetramethylpyrazine in the dog. J Cardiovasc Pharmacol 7(5):841–849CrossRefPubMedGoogle Scholar
  13. 13.
    Tsai CC, Lai TY, Huang WC, Liu IM, Cheng JT (2002) Inhibitory effects of potassium channel blockers on tetramethylpyrazine-induced relaxation of rat aortic strip in vitro. Life Sci 71(11):1321–1330CrossRefPubMedGoogle Scholar
  14. 14.
    Carlsson PO, Olsson R, Kallskog O, Bodin B, Andersson A, Jansson L (2002) Glucose-induced islet blood flow increase in rats: interaction between nervous and metabolic mediators. Am J Physiol Endocrinol Metab 283(3):457–464. doi: 10.1152/ajpendo.00044.2002 CrossRefGoogle Scholar
  15. 15.
    Gao C, Liu X, Liu W, Shi H, Zhao Z, Chen H, Zhao S (2008) Anti-apoptotic and neuroprotective effects of Tetramethylpyrazine following subarachnoid hemorrhage in rats. Auton Neurosci 141(1–2):22–30. doi: 10.1016/j.autneu.2008.04.007 CrossRefPubMedGoogle Scholar
  16. 16.
    Huang Z, Sjoholm A (2008) Ethanol acutely stimulates islet blood flow, amplifies insulin secretion, and induces hypoglycemia via nitric oxide and vagally mediated mechanisms. Endocrinology 149(1):232–236. doi: 10.1210/en.2007-0632 CrossRefPubMedGoogle Scholar
  17. 17.
    Jansson L, Hellerstrom C (1983) Stimulation by glucose of the blood flow to the pancreatic islets of the rat. Diabetologia 25(1):45–50CrossRefPubMedGoogle Scholar
  18. 18.
    Jansson L, Hellerstrom C (1981) A rapid method of visualizing the pancreatic islets for studies of islet capillary blood flow using non-radioactive microspheres. Acta Physiol Scand 113(3):371–374. doi: 10.1111/j.1748-1716.1981.tb06909.x CrossRefPubMedGoogle Scholar
  19. 19.
    Nystrom T, Ortsater H, Huang Z, Zhang F, Larsen FJ, Weitzberg E, Lundberg JO, Sjoholm A (2012) Inorganic nitrite stimulates pancreatic islet blood flow and insulin secretion. Free Radical Biol Med 53(5):1017–1023. doi: 10.1016/j.freeradbiomed.2012.06.031 CrossRefGoogle Scholar
  20. 20.
    Wu L, Olverling A, Fransson L, Ortsater H, Kappe C, Gao X, Sjoholm A (2012) Early intervention with liraglutide improves glucose tolerance without affecting islet microcirculation in young Goto-Kakizaki rats. Regul Pept 177(1–3):92–96. doi: 10.1016/j.regpep.2012.05.091 CrossRefPubMedGoogle Scholar
  21. 21.
    Jansson L (1988) Glucose stimulation of pancreatic islet blood flow by redistribution of the blood flow within the whole pancreatic gland. Pancreas 3(4):409–412CrossRefPubMedGoogle Scholar
  22. 22.
    Jansson L (1984) The blood flow to the pancreas and the islets of Langerhans during an intraperitoneal glucose load in the rat. Diabetes Res 1(2):111–114PubMedGoogle Scholar
  23. 23.
    Iwase M, Uchizono Y, Tashiro K, Goto D, Iida M (2002) Islet hyperperfusion during prediabetic phase in OLETF rats, a model of type 2 diabetes. Diabetes 51(8):2530–2535CrossRefPubMedGoogle Scholar
  24. 24.
    Svensson AM, Ostenson CG, Sandler S, Efendic S, Jansson L (1994) Inhibition of nitric oxide synthase by NG-nitro-l-arginine causes a preferential decrease in pancreatic islet blood flow in normal rats and spontaneously diabetic GK rats. Endocrinology 135(3):849–853. doi: 10.1210/endo.135.3.7520863 CrossRefPubMedGoogle Scholar
  25. 25.
    Svensson AM, Sandler S, Jansson L (1995) The blood flow in pancreatico-duodenal grafts in rats: inhibition of nitric oxide synthase preferentially decreases islet blood flow. Eur J Pharmacol 275(1):99–103CrossRefPubMedGoogle Scholar
  26. 26.
    Chai W, Zhang X, Barrett EJ, Liu Z (2014) Glucagon-like peptide 1 recruits muscle microvasculature and improves insulin’s metabolic action in the presence of insulin resistance. Diabetes 63(8):2788–2799. doi: 10.2337/db13-1597 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, Liu Z (2009) The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia 52(5):752–764. doi: 10.1007/s00125-009-1313-z CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Clark MG (2008) Impaired microvascular perfusion: a consequence of vascular dysfunction and a potential cause of insulin resistance in muscle. Am J Physiol Endocrinol Metab 295(4):732–750. doi: 10.1152/ajpendo.90477.2008 CrossRefGoogle Scholar
  29. 29.
    Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF (2010) Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 33(10):2217–2224. doi: 10.2337/dc10-0612 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Laakso M, Edelman SV, Brechtel G, Baron AD (1990) Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Investig 85(6):1844–1852. doi: 10.1172/jci114644 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Muniyappa R, Montagnani M, Koh KK, Quon MJ (2007) Cardiovascular actions of insulin. Endocr Rev 28(5):463–491. doi: 10.1210/er.2007-0006 CrossRefPubMedGoogle Scholar
  32. 32.
    Kim JA, Montagnani M, Koh KK, Quon MJ (2006) Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 113(15):1888–1904. doi: 10.1161/circulationaha.105.563213 CrossRefPubMedGoogle Scholar
  33. 33.
    Ross RM, Wadley GD, Clark MG, Rattigan S, McConell GK (2007) Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats. Diabetes 56(12):2885–2892. doi: 10.2337/db07-0745 CrossRefPubMedGoogle Scholar
  34. 34.
    Bradley EA, Eringa EC, Stehouwer CD, Korstjens I, van Nieuw Amerongen GP, Musters R, Sipkema P, Clark MG, Rattigan S (2010) Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside in the muscle microcirculation increases nitric oxide synthesis and microvascular perfusion. Arterioscler Thromb Vasc Biol 30(6):1137–1142. doi: 10.1161/atvbaha.110.204404 CrossRefPubMedGoogle Scholar
  35. 35.
    Baron AD, Laakso M, Brechtel G, Edelman SV (1991) Mechanism of insulin resistance in insulin-dependent diabetes mellitus: a major role for reduced skeletal muscle blood flow. J Clin Endocrinol Metab 73(3):637–643. doi: 10.1210/jcem-73-3-637 CrossRefPubMedGoogle Scholar
  36. 36.
    Laakso M, Edelman SV, Brechtel G, Baron AD (1992) Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes 41(9):1076–1083CrossRefPubMedGoogle Scholar
  37. 37.
    Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD (2000) Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 49(7):1231–1238CrossRefPubMedGoogle Scholar
  38. 38.
    Baron AD (1994) Hemodynamic actions of insulin. Am J Physiol 267(2 Pt 1):187–202Google Scholar
  39. 39.
    Vincent MA, Dawson D, Clark AD, Lindner JR, Rattigan S, Clark MG, Barrett EJ (2002) Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes 51(1):42–48CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang L, Deng M, Zhou S (2011) Tetramethylpyrazine inhibits hypoxia-induced pulmonary vascular leakage in rats via the ROS-HIF-VEGF pathway. Pharmacology 87(5–6):265–273. doi: 10.1159/000326082 CrossRefPubMedGoogle Scholar
  41. 41.
    Gao X, Zhao XL, Zhu YH, Li XM, Xu Q, Lin HD, Wang MW (2011) Tetramethylpyrazine protects palmitate-induced oxidative damage and mitochondrial dysfunction in C2C12 myotubes. Life Sci 88(17–18):803–809. doi: 10.1016/j.lfs.2011.02.025 CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang ZH, Yu SZ, Wang ZT, Zhao BL, Hou JW, Yang FJ, Xin WJ (1994) Scavenging effects of tetramethylpyrazine on active oxygen free radicals. Zhongguo yao li xue bao = Acta Pharmacol Sin 15(3):229–231Google Scholar
  43. 43.
    Jansson L (1985) Dissociation between pancreatic islet blood flow and insulin release in the rat. Acta Physiol Scand 124(2):223–228. doi: 10.1111/j.1748-1716.1985.tb07655.x CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2017

Authors and Affiliations

  • X. Xu
    • 1
    • 2
  • L. Wu
    • 3
  • Z. Q. Lu
    • 1
  • P. Xia
    • 1
    • 2
  • X. P. Zhu
    • 1
    • 2
  • X. Gao
    • 1
    • 2
  1. 1.Department of Endocrinology and MetabolismAffiliated Zhongshan Hospital of Fudan UniversityShanghaiPeople’s Republic of China
  2. 2.Institute of Chronic Metabolic Diseases of Fudan UniversityShanghaiPeople’s Republic of China
  3. 3.Department of GeriatricsAffiliated Zhongshan Hospital of Fudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations