Journal of Endocrinological Investigation

, Volume 41, Issue 4, pp 455–463 | Cite as

Anti-TNF-α antibody alleviates insulin resistance in rats with sepsis-induced stress hyperglycemia

Original Article



To explore the effects and mechanisms of anti-tumor necrosis factor-α (TNF-α) antibody on insulin resistance (IR) in rats with sepsis-induced stress hyperglycemia.


The sepsis-induced stress hyperglycemic rat model was constructed by cecal ligation and puncture combined with the intraperitoneal injection of lipopolysaccharide. The rats were randomly divided into six groups: normal control (NC) group, surgical rats (Cntl) group, high-dose anti-TNF-α antibody therapy (TNF, 6 mg/kg) group, low-dose anti-TNF-α antibody therapy (Tnf, 3 mg/kg) group, insulin therapy (INS) group, and INS + Tnf group. The blood glucose and serum insulin concentrations were detected, followed by analysis of intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic–euglycemic clamp. Finally, the expression levels of phospho-Akt (p-Akt), Akt, p-mTOR, mTOR, nuclear factor-κB (NFκB), I kappa beta kinase (IKKβ), and suppressor of cytokine signaling (SOCS-3) were detected by western blotting.


There was no significant difference in blood glucose concentrations among these groups, while the serum insulin concentration in TNF and Tnf groups was lower than that in the Cntl group at postoperative 6 h (P < 0.05). IPGTT analysis revealed that blood glucose level was lower in the TNF group than that in the Cntl group (P < 0.05). The glucose infusion rate in the Cntl group was lower than that in the Tnf and TNF groups (P < 0.05). The p-Akt/Akt, p-mTOR/mTOR ratio, and expression levels of NFκB, IKKβ and SOCS-3 were lower in the drug intervention than that in the Cntl group (P < 0.05).


Anti-TNF-α antibody could reduce IR by inhibiting AKt/mTOR signaling pathway and the expression levels of NFκB, IKKβ, and SOCS-3 in rats with sepsis-induced stress hyperglycemia.


Stress hyperglycemia Insulin sensitivity Anti-TNF-α antibody 


Compliance with ethical standards


This study was supported by China Postdoctoral Science Foundation (No. 20080441294).

Conflict of interest

The author declares that they have no conflict of interest.

Ethical approval

All the surgical procedures for animal use were approved by the University of Shandong Institutional Animal Care and Use Committee.

Informed consent

No informed consent needed.


  1. 1.
    Leonidou L, Michalaki M, Leonardou A, Polyzogopoulou E, Fouka K, Gerolymos M, Leonardos P, Psirogiannis A, Kyriazopoulou V, Gogos CA (2008) Stress-induced hyperglycemia in patients with severe sepsis: a compromising factor for survival. Am J Med Sci 336(6):467–471CrossRefPubMedGoogle Scholar
  2. 2.
    Marik PE, Raghavan M (2004) Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med 30(5):748–756CrossRefPubMedGoogle Scholar
  3. 3.
    Van Cromphaut SJ, Vanhorebeek I, Van den Berghe G (2008) Glucose metabolism and insulin resistance in sepsis. Curr Pharm Des 14(19):1887–1899CrossRefPubMedGoogle Scholar
  4. 4.
    Li L, Messina JL (2009) Acute insulin resistance following injury. Trends Endocrinol Metab Tem 20(9):429–435CrossRefPubMedGoogle Scholar
  5. 5.
    Van den Berghe G, Wouters PJ, Bouillon R, Weekers F, Verwaest C, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P (2003) Outcome benefit of intensive insulin therapy in the critically ill: insulin dose versus glycemic control. Crit Care Med 31(2):359–366CrossRefPubMedGoogle Scholar
  6. 6.
    Lambert K, Ward J (2009) The use of thalidomide in the management of bleeding from a gastric cancer. Palliat Med 23(5):473–475CrossRefPubMedGoogle Scholar
  7. 7.
    Dhindsa S, Tripathy D, Mohanty P, Ghanim H, Syed T, Aljada A, Dandona P (2004) Differential effects of glucose and alcohol on reactive oxygen species generation and intranuclear nuclear factor-κB in mononuclear cells. Metabolism 53(3):330–334CrossRefPubMedGoogle Scholar
  8. 8.
    Hernandez R, Teruel T, Lorenzo M (2001) Akt mediates insulin induction of glucose uptake and up-regulation of GLUT4 gene expression in brown adipocytes. FEBS Lett 494(3):225–231CrossRefPubMedGoogle Scholar
  9. 9.
    Lloberas N, Cruzado JM, Franquesa M, Herrero-Fresneda I, Torras J, Alperovich G, Rama I, Vidal A, Grinyó JM (2006) Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol 17(5):1395–1404CrossRefPubMedGoogle Scholar
  10. 10.
    Yuan M, Konstantopoulos N, Lee J, Hansen L, Li Z-W, Karin M, Shoelson SE (2001) Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293(5535):1673–1677CrossRefPubMedGoogle Scholar
  11. 11.
    Hotamisligil GS (2003) Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord 27(3):S53–S55CrossRefPubMedGoogle Scholar
  12. 12.
    Moller DE (2000) Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 11(6):212–217CrossRefPubMedGoogle Scholar
  13. 13.
    Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271(5249):665–668CrossRefPubMedGoogle Scholar
  14. 14.
    Fukuzawa M, Satoh J, Qiang X, Miyaguchi S, Sakata Y, Nakazawa T, Ikehata F, Ohta S, Toyota T (1999) Inhibition of tumor necrosis factor-α with anti-diabetic agents. Diabetes Res Clin Pract 43(3):147–154CrossRefPubMedGoogle Scholar
  15. 15.
    Hundal RS, Petersen KF, Mayerson AB, Randhawa PS, Inzucchi S, Shoelson SE, Shulman GI (2002) Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 109(10):1321–1326CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Waters JP, Pober JS, Bradley JR (2013) Tumour necrosis factor and cancer. J Pathol 230(3):241–248CrossRefPubMedGoogle Scholar
  17. 17.
    Coskun M, Nielsen OH (2013) Tumor necrosis factor inhibitors for inflammatory bowel disease. N Engl J Med 369(8):754–762CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Liu R (2014) The effect of valsartan on tumor necrosis factor-alpha (TNF-alpha) in rat hearts during myocardial ischemia reperfusion. Cardiology 129:50Google Scholar
  19. 19.
    Chu W-M (2013) Tumor necrosis factor. Cancer Lett 328(2):222–225CrossRefPubMedGoogle Scholar
  20. 20.
    Liang H, Yin B, Zhang H, Zhang S, Zeng Q, Wang J, Jiang X, Yuan L, Wang CY, Li Z (2008) Blockade of tumor necrosis factor (TNF) receptor type 1-mediated TNF-alpha signaling protected Wistar rats from diet-induced obesity and insulin resistance. Endocrinology 149(6):2943CrossRefPubMedGoogle Scholar
  21. 21.
    Burska AN, Sakthiswary R, Sattar N (2015) Effects of tumour necrosis factor antagonists on insulin sensitivity/resistance in rheumatoid arthritis: a systematic review and meta-analysis. PLoS One 10(6):e0128889CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348(2):138–150CrossRefPubMedGoogle Scholar
  23. 23.
    Losser MR, Damoisel C, Payen D (2010) Bench-to-bedside review: glucose and stress conditions in the intensive care unit. Crit Care 14(4):231CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Grimble RF (2002) Inflammatory status and insulin resistance. Curr Opin Clin Nutr Metab Care 5(5):551–559CrossRefPubMedGoogle Scholar
  25. 25.
    Petit F, Bagby GJ, Lang CH (1995) Tumor necrosis factor mediates zymosan-induced increase in glucose flux and insulin resistance. Am J Physiol 268(2 Pt 1):E219–E228PubMedGoogle Scholar
  26. 26.
    Ofei F, Hurel S, Newkirk J, Sopwith M, Taylor R (1996) Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45(7):881–885CrossRefPubMedGoogle Scholar
  27. 27.
    Gonzalez-Gay MA, De Matias JM, Gonzalez-Juanatey C, Garcia-Porrua C, Sanchez-Andrade A, Martin J, Llorca J (2006) Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin Exp Rheumatol 24(1):83–86PubMedGoogle Scholar
  28. 28.
    Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335(6076):1638–1643CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Odegaard JI, Chawla A (2013) Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339(6116):172–177CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015:610813CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    De LC, Olefsky JM (2006) Inflammation and insulin resistance. J Clin Investig 116(7):1793–1801CrossRefGoogle Scholar
  32. 32.
    Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23(5):599–622CrossRefPubMedGoogle Scholar
  33. 33.
    Yang J, Park Y, Zhang H, Xu X, Laine GA, Dellsperger KC, Zhang C (2009) Feed-forward signaling of TNF-alpha and NF-kappaB via IKK-beta pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 296(6):10CrossRefGoogle Scholar
  34. 34.
    Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275(21):15985–15991CrossRefPubMedGoogle Scholar
  35. 35.
    Hong FNV, Gao B (2001) Tumor necrosis factor alpha attenuates interferon alpha signaling in the liver: involvement of SOCS3 and SHP2 and implication in resistance to interferon therapy. FASEB J 15(9):1595–1597CrossRefPubMedGoogle Scholar
  36. 36.
    Emanuelli B, Peraldi P, Filloux C, Chavey C, Freidinger K, Hilton DJ, Hotamisligil GS, Van Obberghen E (2001) SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-α in the adipose tissue of obese mice. J Biol Chem 276(51):47944–47949CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2017

Authors and Affiliations

  1. 1.Department of EndocrinologyJinan Military General HospitalJinanChina
  2. 2.Department of Cadres HealthcareJinan Military General HospitalJinanChina

Personalised recommendations