Energy expenditure in the etiology of human obesity: spendthrift and thrifty metabolic phenotypes and energy-sensing mechanisms

  • P. Piaggi
  • K. L. Vinales
  • A. Basolo
  • F. Santini
  • J. Krakoff
Short Review

Abstract

The pathogenesis of human obesity is the result of dysregulation of the reciprocal relationship between food intake and energy expenditure (EE), which influences daily energy balance and ultimately leads to weight gain. According to principles of energy homeostasis, a relatively lower EE in a setting of energy balance may lead to weight gain; however, results from different study groups are contradictory and indicate a complex interaction between EE and food intake which may differentially influence weight change in humans. Recently, studies evaluating the adaptive response of one component to perturbations of the other component of energy balance have revealed both the existence of differing metabolic phenotypes (“spendthrift” and “thrifty”) resulting from overeating or underfeeding, as well as energy-sensing mechanisms linking EE to food intake, which might explain the propensity of an individual to weight gain. The purpose of this review is to debate the role that human EE plays on body weight regulation and to discuss the physiologic mechanisms linking EE and food intake. An increased understanding of the complex interplay between human metabolism and food consumption may provide insight into pathophysiologic mechanisms underlying weight gain, which may eventually lead to prevention and better treatment of human obesity.

Keywords

Energy expenditure Adaptive thermogenesis Body weight regulation Metabolic phenotypes Energy sensing 

References

  1. 1.
    Weyer C, Snitker S, Rising R, Bogardus C, Ravussin E (1999) Determinants of energy expenditure and fuel utilization in man: effects of body composition, age, sex, ethnicity and glucose tolerance in 916 subjects. Int J Obes Relat Metab Disord 23(7):715–722PubMedCrossRefGoogle Scholar
  2. 2.
    Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C (1986) Determinants of 24-h energy expenditure in man. Methods and results using a respiratory chamber. J Clin Investig 78(6):1568–1578. doi:10.1172/JCI112749 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lam YY, Ravussin E (2016) Analysis of energy metabolism in humans: a review of methodologies. Mol Metab 5(11):1057–1071. doi:10.1016/j.molmet.2016.09.005 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Lam YY, Ravussin E (2017) Indirect calorimetry: an indispensable tool to understand and predict obesity. Eur J Clin Nutr 71(3):318–322. doi:10.1038/ejcn.2016.220 PubMedCrossRefGoogle Scholar
  5. 5.
    Lam YY, Redman LM, Smith SR, Bray GA, Greenway FL, Johannsen D, Ravussin E (2014) Determinants of sedentary 24-h energy expenditure: equations for energy prescription and adjustment in a respiratory chamber. Am J Clin Nutr 99(4):834–842. doi:10.3945/ajcn.113.079566 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    de Jonge L, Nguyen T, Smith SR, Zachwieja JJ, Roy HJ, Bray GA (2001) Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity. Int J Obes Relat Metab Disord 25(7):929–934. doi:10.1038/sj.ijo.0801656 PubMedCrossRefGoogle Scholar
  7. 7.
    Keys A, Taylor HL, Grande F (1973) Basal metabolism and age of adult man. Metab Clin Exp 22(4):579–587PubMedCrossRefGoogle Scholar
  8. 8.
    Bosy-Westphal A, Eichhorn C, Kutzner D, Illner K, Heller M, Muller MJ (2003) The age-related decline in resting energy expenditure in humans is due to the loss of fat-free mass and to alterations in its metabolically active components. J Nutr 133(7):2356–2362PubMedGoogle Scholar
  9. 9.
    Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR (2005) Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr 82(5):941–948PubMedGoogle Scholar
  10. 10.
    Bogardus C, Lillioja S, Ravussin E, Abbott W, Zawadzki JK, Young A, Knowler WC, Jacobowitz R, Moll PP (1986) Familial dependence of the resting metabolic rate. N Engl J Med 315(2):96–100. doi:10.1056/NEJM198607103150205 PubMedCrossRefGoogle Scholar
  11. 11.
    Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, Boyce V, Howard BV, Bogardus C (1988) Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 318(8):467–472. doi:10.1056/NEJM198802253180802 PubMedCrossRefGoogle Scholar
  12. 12.
    Piaggi P, Masindova I, Muller YL, Mercader J, Wiessner GB, Chen P, Consortium STD, Kobes S, Hsueh WC, Mongalo M, Knowler WC, Krakoff J, Hanson RL, Bogardus C, Baier LJ (2017) A genome-wide association study using a custom genotyping array identifies variants in GPR158 associated with reduced energy expenditure in American Indians. Diabetes. doi:10.2337/db16-1565 Google Scholar
  13. 13.
    Tataranni PA, Harper IT, Snitker S, Del Parigi A, Vozarova B, Bunt J, Bogardus C, Ravussin E (2003) Body weight gain in free-living Pima Indians: effect of energy intake vs. expenditure. Int J Obes Relat Metab Disord 27(12):1578–1583. doi:10.1038/sj.ijo.0802469 PubMedCrossRefGoogle Scholar
  14. 14.
    Piaggi P, Thearle MS, Bogardus C, Krakoff J (2013) Lower energy expenditure predicts long-term increases in weight and fat mass. J Clin Endocrinol Metab 98(4):E703–707. doi:10.1210/jc.2012-3529 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Buscemi S, Verga S, Caimi G, Cerasola G (2005) Low relative resting metabolic rate and body weight gain in adult Caucasian Italians. Int J Obes 29(3):287–291. doi:10.1038/sj.ijo.0802888 CrossRefGoogle Scholar
  16. 16.
    Roberts SB, Savage J, Coward WA, Chew B, Lucas A (1988) Energy expenditure and intake in infants born to lean and overweight mothers. N Engl J Med 318(8):461–466. doi:10.1056/NEJM198802253180801 PubMedCrossRefGoogle Scholar
  17. 17.
    Griffiths M, Payne PR, Stunkard AJ, Rivers JP, Cox M (1990) Metabolic rate and physical development in children at risk of obesity. Lancet 336(8707):76–78PubMedCrossRefGoogle Scholar
  18. 18.
    Luke A, Durazo-Arvizu R, Cao G, Adeyemo A, Tayo B, Cooper R (2006) Positive association between resting energy expenditure and weight gain in a lean adult population. Am J Clin Nutr 83(5):1076–1081PubMedGoogle Scholar
  19. 19.
    Seidell JC, Muller DC, Sorkin JD, Andres R (1992) Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain: the baltimore longitudinal study on Aging. Int J Obes Relat Metab Disord 16(9):667–674PubMedGoogle Scholar
  20. 20.
    Weinsier RL, Nelson KM, Hensrud DD, Darnell BE, Hunter GR, Schutz Y (1995) Metabolic predictors of obesity. Contribution of resting energy expenditure, thermic effect of food, and fuel utilization to 4-year weight gain of post-obese and never-obese women. J Clin Investig 95(3):980–985. doi:10.1172/JCI117807 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Anthanont P, Jensen MD (2016) Does basal metabolic rate predict weight gain? Am J Clin Nutr 104(4):959–963. doi:10.3945/ajcn.116.134965 PubMedCrossRefGoogle Scholar
  22. 22.
    Amatruda JM, Statt MC, Welle SL (1993) Total and resting energy expenditure in obese women reduced to ideal body weight. J Clin Investig 92(3):1236–1242. doi:10.1172/JCI116695 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Votruba SB, Thearle MS, Piaggi P, Knowler WC, Hanson RL, Krakoff J (2014) Weight maintenance from young adult weight predicts better health outcomes. Obesity 22(11):2361–2369. doi:10.1002/oby.20854 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Piaggi P, Krakoff J, Bogardus C, Thearle MS (2013) Lower “awake and fed thermogenesis” predicts future weight gain in subjects with abdominal adiposity. Diabetes 62(12):4043–4051. doi:10.2337/db13-0785 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Secor SM (2009) Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 179(1):1–56. doi:10.1007/s00360-008-0283-7 PubMedCrossRefGoogle Scholar
  26. 26.
    Thearle MS, Pannacciulli N, Bonfiglio S, Pacak K, Krakoff J (2013) Extent and determinants of thermogenic responses to 24 h of fasting, energy balance, and five different overfeeding diets in humans. J Clin Endocrinol Metab 98(7):2791–2799. doi:10.1210/jc.2013-1289 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Weyer C, Vozarova B, Ravussin E, Tataranni PA (2001) Changes in energy metabolism in response to 48 h of overfeeding and fasting in Caucasians and Pima Indians. Int J Obes Relat Metab Disord 25(5):593–600. doi:10.1038/sj.ijo.0801610 PubMedCrossRefGoogle Scholar
  28. 28.
    Schlogl M, Piaggi P, Pannacciuli N, Bonfiglio SM, Krakoff J, Thearle MS (2015) Energy expenditure responses to fasting and overfeeding identify phenotypes associated with weight change. Diabetes 64(11):3680–3689. doi:10.2337/db15-0382 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Reinhardt M, Thearle MS, Ibrahim M, Hohenadel MG, Bogardus C, Krakoff J, Votruba SB (2015) A human thrifty phenotype associated with less weight loss during caloric restriction. Diabetes 64(8):2859–2867. doi:10.2337/db14-1881 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Reinhardt M, Schlogl M, Bonfiglio S, Votruba SB, Krakoff J, Thearle MS (2016) Lower core body temperature and greater body fat are components of a human thrifty phenotype. Int J Obes 40(5):754–760. doi:10.1038/ijo.2015.229 CrossRefGoogle Scholar
  31. 31.
    Vinales KL, Schlogl M, Piaggi P, Hohenadel M, Graham A, Bonfiglio S, Krakoff J, Thearle MS (2017) The consistency in macronutrient oxidation and the role for epinephrine in the response to fasting and overfeeding. J Clin Endocrinol Metab 102(1):279–289. doi:10.1210/jc.2016-3006 PubMedGoogle Scholar
  32. 32.
    Caudwell P, Finlayson G, Gibbons C, Hopkins M, King N, Naslund E, Blundell JE (2013) Resting metabolic rate is associated with hunger, self-determined meal size, and daily energy intake and may represent a marker for appetite. Am J Clin Nutr 97(1):7–14. doi:10.3945/ajcn.111.029975 PubMedCrossRefGoogle Scholar
  33. 33.
    Weise CM, Hohenadel MG, Krakoff J (2005) Votruba SB (2014) Body composition and energy expenditure predict ad libitum food and macronutrient intake in humans. Int J Obes 38(2):243–251. doi:10.1038/ijo.2013.85 CrossRefGoogle Scholar
  34. 34.
    Blundell JE, Caudwell P, Gibbons C, Hopkins M, Naslund E, King NA, Finlayson G (2012) Body composition and appetite: fat-free mass (but not fat mass or BMI) is positively associated with self-determined meal size and daily energy intake in humans. Br J Nutr 107(3):445–449. doi:10.1017/S0007114511003138 PubMedCrossRefGoogle Scholar
  35. 35.
    Piaggi P, Thearle MS, Krakoff J, Votruba SB (2015) Higher daily energy expenditure and respiratory quotient, rather than fat-free mass, independently determine greater ad libitum overeating. J Clin Endocrinol Metab 100(8):3011–3020. doi:10.1210/jc.2015-2164 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hopkins M, Finlayson G, Duarte C, Whybrow S, Ritz P, Horgan GW, Blundell JE, Stubbs RJ (2016) Modelling the associations between fat-free mass, resting metabolic rate and energy intake in the context of total energy balance. Int J Obes 40(2):312–318. doi:10.1038/ijo.2015.155 CrossRefGoogle Scholar
  37. 37.
    Dulloo AG, Jacquet J, Miles-Chan JL, Schutz Y (2017) Passive and active roles of fat-free mass in the control of energy intake and body composition regulation. Eur J Clin Nutr 71(3):353–357. doi:10.1038/ejcn.2016.256 PubMedCrossRefGoogle Scholar
  38. 38.
    Hopkins M, Blundell JE (2016) Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity. Clin Sci (Lond Engl 1979) 130(18):1615–1628. doi:10.1042/CS20160006 CrossRefGoogle Scholar
  39. 39.
    Weise CM, Thiyyagura P, Reiman EM, Chen K, Krakoff J (2013) Fat-free body mass but not fat mass is associated with reduced gray matter volume of cortical brain regions implicated in autonomic and homeostatic regulation. NeuroImage 64:712–721. doi:10.1016/j.neuroimage.2012.09.005 PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432PubMedCrossRefGoogle Scholar
  41. 41.
    Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1(11):1155–1161PubMedCrossRefGoogle Scholar
  42. 42.
    Rosenbaum M, Leibel RL (1998) Leptin: a molecule integrating somatic energy stores, energy expenditure and fertility. Trends Endocrinol Metab TEM 9(3):117–124PubMedCrossRefGoogle Scholar
  43. 43.
    Ceccarini G, Maffei M, Vitti P, Santini F (2015) Fuel homeostasis and locomotor behavior: role of leptin and melanocortin pathways. J Endocrinol Investig 38(2):125–131. doi:10.1007/s40618-014-0225-z CrossRefGoogle Scholar
  44. 44.
    Ortega E, Pannacciulli N, Bogardus C, Krakoff J (2007) Plasma concentrations of free triiodothyronine predict weight change in euthyroid persons. Am J Clin Nutr 85(2):440–445PubMedPubMedCentralGoogle Scholar
  45. 45.
    Rosenbaum M, Hirsch J, Murphy E, Leibel RL (2000) Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. Am J Clin Nutr 71(6):1421–1432PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2017

Authors and Affiliations

  1. 1.Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH)PhoenixUSA
  2. 2.Endocrinology Unit, Obesity Research CenterUniversity Hospital of PisaPisaItaly

Personalised recommendations