Journal of Endocrinological Investigation

, Volume 40, Issue 11, pp 1165–1174 | Cite as

Drug-induced obesity and its metabolic consequences: a review with a focus on mechanisms and possible therapeutic options



Weight gain is a common side effect of many widely used drugs. Weight gain of a few kilograms to an increase of 10% or more of initial body weight has been described. Not only the weight gain as such puts a burden on the health risks of the involved patients, the accompanying increase in the incidence of the metabolic syndrome, type 2 diabetes mellitus, and cardiovascular risk factors urges the caregiver to identify and to closely monitor the patients at risk. In this review, the different classes of drugs with significant weight gaining properties and the metabolic consequences are described. Specific attention is given to pathogenetic mechanisms underlying the metabolic effects and to potential therapeutic measures to prevent them.


Drug-induced obesity Mechanisms Metabolic syndrome Antipsychotics Therapy 


Compliance with ethical standards

Conflict of interest

Luc Van Gaal has received honoraria as speaker, consultant, and member of the international Advisory Board of Novo Nordisk, Eli-Lilly, Astra Zeneca, Janssen J&J, Merck MSD, Boehringer Ingelheim, Servier, and Sanofi. Ann Verhaegen has received honoraria as a speaker and member of the national Advisory Board of Eli-Lilly, Boehringer Ingelheim, Novo Nordisk, Amgen, Janssen J&J, Merck MSD, Astra Zeneca, and Sanofi.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Since this is a review, informed consent is not applicable.


The authors did not receive funding for this manuscript or for research in this field.


  1. 1.
  2. 2.
    Medici V, McClave SA, Miller KR (2016) Common medications which lead to unintended alterations in weight gain or organ lipotoxicity. Curr Gastroenterol Rep 18(1):2–12CrossRefPubMedGoogle Scholar
  3. 3.
    Domecq JP, Prutsky Gk KF, Lababidi MH et al (2015) Drugs commonly associated with weight change: a systematic review and meta-analysis. J Clin Endocrinol Metab 100(2):363–370CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Curtis JR, Westfall AO, Allison J et al (2006) Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheum 55(3):420–426CrossRefPubMedGoogle Scholar
  5. 5.
    Wung PK, Anderson T, Fontaine KR et al (2008) Effects of glucocorticoids on weight change during the treatment of Wegener’s granulomatosis. Wegener’s Granulomatosis Etanercept Trial Research Group. Arthritis Rheum 59(5):746–753CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Elster EA, Leeser DB, Morrissette C et al (2008) Obesity following kidney transplantation and steroid avoidance immunosuppression. Clin Transplant 22(3):354–359CrossRefPubMedGoogle Scholar
  7. 7.
    Christ-Crain M, Kola B, Lolli F, Fekete C, Seboek D, Wittmann G et al (2008) AMP-activated protein kinase mediates glucocorticoid induced metabolic changes: a novel mechanism in Cushing’s syndrome. FASEB J 22:1672–1683CrossRefPubMedGoogle Scholar
  8. 8.
    Bowles NP, Karatsoreos IN, Li X et al (2015) A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. Proc Natl Acad Sci USA 112(1):285–290CrossRefPubMedGoogle Scholar
  9. 9.
    Petersons CJ, Mangelsdorf BL, Jenkins AB et al (2013) Effects of low-dose prednisolone on hepatic and peripheral insulin sensitivity, insulin secretion, and abdominal adiposity in patients with inflammatory rheumatologic disease. Diabetes Care 36:2822–2829CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dube S, Slama MQ, Basu A, Rizza RA, Basu R (2015) Glucocorticoid excess increases hepatic 11β-HSD-1 activity in humans: implications in steroid-induced diabetes. J Clin Endocrinol Metab 100(11):4155–4162CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wolf G (2002) Glucocorticoids in adipocytes stimulate visceral obesity. Nutr Rev 60(5 Pt 1):148–151PubMedGoogle Scholar
  12. 12.
    Stomby A, Andrew R, Walker BR, Olsson T (2014) Tissue-specific dysregulation of cortisol regeneration by 11betaHSD1 in obesity: has it promised too much? Diabetologia 57(6):1100–1110CrossRefPubMedGoogle Scholar
  13. 13.
    Van Gaal L, Scheen A (2015) Weight management in type 2 diabetes: current and emerging approaches to treatment. Diabetes Care 38(6):1161–1172CrossRefPubMedGoogle Scholar
  14. 14.
    Russell-Jones D, Khan R (2007) Insulin-associated weight gain in diabetes—causes, effects and coping strategies. Diabetes Obes Metab 6:799–812CrossRefGoogle Scholar
  15. 15.
    Pontiroli AE, Miele L, Morabito A (2011) Increase of body weight during the first year of intensive insulin treatment in type 2 diabetes: systematic review and meta-analysis. Diabetes Obes Metab 13(11):1008–1019CrossRefPubMedGoogle Scholar
  16. 16.
    Mäkimattila S, Nikkilä K, Yki-Yärvinen H (1999) Causes of weight gain during insulin therapy with and without metformin in patients with type 2 diabetes mellitus. Diabetologia 42:406–412CrossRefPubMedGoogle Scholar
  17. 17.
    Hermansen K, Davies M (2007) Does insulin detemir have a role in reducing risk of insulin-associated weight gain? Diabetes Obes Metab 9(3):209–217CrossRefPubMedGoogle Scholar
  18. 18.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865CrossRefGoogle Scholar
  19. 19.
    Kahn SE, Haffner SM, Heise MA, F.R.C.P. for the ADOPT Study Group et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443CrossRefPubMedGoogle Scholar
  20. 20.
    Wilding J (2006) Thiazolidinediones, insulin resistance and obesity: finding a balance. Int J Clin Pract 60:1272–1280CrossRefPubMedGoogle Scholar
  21. 21.
    Sanyal AJ, Chalasani N, Kowdley KV et al (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 362(18):1675–1685CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    UK Prospective Diabetes Study Group (1995) Overview of 6 years’ therapy of type II diabetes: a progressive disease (UK prospective diabetes study 16). Diabetes 44:149–158CrossRefGoogle Scholar
  23. 23.
    Apovian CM, Aronne LJ, Bessesen DH et al (2015) Pharmacological management of obesity: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab 100(2):342–362CrossRefPubMedGoogle Scholar
  24. 24.
    Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd-Jones D, Sowers J (2013) Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment—a position paper of The Obesity Society and The American Society of Hypertension. Obesity (Silver Spring) 21(1):8–24CrossRefGoogle Scholar
  25. 25.
    Sharma AM, Pischon T, Hardt S, Kunz I, Luft FC (2001) B-adrenergic receptor blockers and weight gain: a systematic analysis. Hypertension 37:250–254CrossRefPubMedGoogle Scholar
  26. 26.
    Messerli FH, Bell DS, Fonseca V, Investigators GEMINI et al (2007) Body weight changes with beta-blocker use: results of GEMINI. Am J Med 120(7):610–615CrossRefPubMedGoogle Scholar
  27. 27.
    Clement K, Vaisse C, Manning BS et al (1995) Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med 333:352–354CrossRefPubMedGoogle Scholar
  28. 28.
    Welle S, Schwartz RG, Statt M (1991) Reduced metabolic rate during beta-adrenergic blockade in humans. Metabolism 40:619–622CrossRefPubMedGoogle Scholar
  29. 29.
    Astrup A, Simonsen L, Bülow J, Madsen J, Christensen NJ (1989) Epinephrine mediates facultative carbohydrate-induced thermogenesis in human skeletal muscle. Am J Physiol 257(3 Pt 1):E340–E345PubMedGoogle Scholar
  30. 30.
    Koch G, Franz IW, Lohmann FW (1981) Effects of short-term and long-term treatment with cardio-selective and non-selective beta-receptor blockade on carbohydrate and lipid metabolism and on plasma catecholamines at rest and during exercise. Clin Sci 61(suppl 7):433s–435sCrossRefPubMedGoogle Scholar
  31. 31.
    Elliott WJ, Meyer PM (2007) Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 369(9557):201–207CrossRefPubMedGoogle Scholar
  32. 32.
    Pollare T, Lithell H, Selinus I, Berne C (1989) Sensitivity to insulin during treatment with atenolol and metoprolol: a randomised, double blind study of effects on carbohydrate and lipoprotein metabolism in hypertensive patients. BMJ 298(6681):1152–1157CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bakris GL, Fonseca V, Katholi RE, Investigators GEMINI et al (2004) Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA 292(18):2227–2236CrossRefPubMedGoogle Scholar
  34. 34.
    Ripley TL, Saseen JJ (2014) β-blockers: a review of their pharmacological and physiological diversity in hypertension. Ann Pharmacother 48(6):723–733CrossRefPubMedGoogle Scholar
  35. 35.
    Moore TJ, Mattison DR (2017) Adult utilization of psychiatric drugs and differences by sex, age, and race. JAMA Intern Med 177(2):274–275CrossRefPubMedGoogle Scholar
  36. 36.
    Compton MT, Daumit GL, Druss BG (2006) Cigarette smoking and overweight/obesity among individuals with serious mental illnesses: a preventive perspective. Harv Rev Psychiatry 14(4):212–222CrossRefPubMedGoogle Scholar
  37. 37.
    Naughton M, Dinan TG, Scott LV (2014) Corticotropin-releasing hormone and the hypothalamic-pituitary-adrenal axis in psychiatric disease. Handb Clin Neurol 124:69–91CrossRefPubMedGoogle Scholar
  38. 38.
    Ménard C, Pfau ML, Hodes GE, Russo SJ (2017) Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology 42(1):62–80CrossRefPubMedGoogle Scholar
  39. 39.
    Capuron L, Lasselin J, Castanon N (2017) Role of adiposity-driven inflammation in depressive morbidity. Neuropsychopharmacology 42(1):115–128CrossRefPubMedGoogle Scholar
  40. 40.
    Chuang JC, Krishnan V, Yu HG et al (2010) A beta3-adrenergic-leptin-melanocortin circuit regulates behavioral and metabolic changes induced by chronic stress. Biol Psychiatry 67(11):1075–1082CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zimmermann U, Kraus T, Himmerich H, Schuld A, Pollmächer T (2003) Epidemiology, implications and mechanisms underlying drug induced weight gain in psychiatric patients. J Psychiatr Res 37(3):193–220CrossRefPubMedGoogle Scholar
  42. 42.
    Vandenberghe F, Gholam-Rezaee M, Saigí-Morgui N et al (2015) Importance of early weight changes to predict long-term weight gain during psychotropic drug treatment. J Clin Psychiatry 76(11):e1417–e1423CrossRefPubMedGoogle Scholar
  43. 43.
    American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists et al (2004) Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care 27(2):596–601CrossRefGoogle Scholar
  44. 44.
    Bernstein JG (1987) Induction of obesity by psychotropic drugs. Ann N Y Acad Sci 499:203–215CrossRefPubMedGoogle Scholar
  45. 45.
    Smith GC, Vickers MH, Cognard E, Shepherd PR (2009) Clozapine and quetiapine acutely reduce glucagon-like peptide-1 production and increase glucagon release in obese rats: implications for glucose metabolism and food choice behaviour. Schizophr Res 115(1):30–40CrossRefPubMedGoogle Scholar
  46. 46.
    Stanhope KL, Havel PJ (2010) Fructose consumption: recent results and their potential implications. Ann N Y Acad Sci 1190:15–24CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Himmerich H, Minkwitz J, Kirkby KC (2015) Weight gain and metabolic changes during treatment with antipsychotics and antidepressants. Endocr Metab Immune Disord Drug Targets 15(4):252–260CrossRefPubMedGoogle Scholar
  48. 48.
    Casey DE, Zorn SH (2001) The pharmacology of weight gain with antipsychotics. Clin Psych 62(suppl 7):4–10Google Scholar
  49. 49.
    Bahra SM, Weidemann BJ, Castro AN et al (2015) Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure. EBioMedicine 2(11):1725–1734CrossRefPubMedGoogle Scholar
  50. 50.
    Oh JE, Cho YM, Kwak SN et al (2012) Inhibition of mouse brown adipocyte differentiation by second-generation antipsychotics. Exp Mol Med 44(9):545–553CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pavan C, Vindigni V, Michelotto L et al (2010) Weight gain related to treatment with atypical antipsychotics is due to activation of PKC-β. Pharmacogenomics J 10(5):408–417CrossRefPubMedGoogle Scholar
  52. 52.
    Everard A, Cani PD (2013) Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol 27(1):73–83CrossRefPubMedGoogle Scholar
  53. 53.
    Flowers SA, Evans SJ, Ward KM, McInnis MG, Ellingrod VL (2017) Interaction between atypical antipsychotics and the gut microbiome in a bipolar disease cohort. Pharmacotherapy 37(3):261–267CrossRefPubMedGoogle Scholar
  54. 54.
    Shams TA, Müller DJ (2014) Antipsychotic induced weight gain: genetics, epigenetics, and biomarkers reviewed. Curr Psychiatry Rep 16(10):473CrossRefPubMedGoogle Scholar
  55. 55.
    Lett TA, Wallace TJ, Chowdhury NI, Tiwari AK, Kennedy JL, Müller DJ (2012) Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry 17(3):242–266CrossRefPubMedGoogle Scholar
  56. 56.
    Serreti A, Mandelli L (2010) Antidepresants and body weight: a comprehensive review and meta-analysis. J Clin Psychiatry 71(10):1259–1272CrossRefGoogle Scholar
  57. 57.
    Massand PS, Gupta S (2002) Long term side effects of newer generation antidepressants SSRIS, venlafaxine, nefazodone, bupropion and mirtazapine. Ann Clin Psychiatry 14(3):175–182CrossRefGoogle Scholar
  58. 58.
    Gadde KM, Xiong GL (2007) Bupropion for weight reduction. Expert Rev Neurother 7(1):17–24CrossRefPubMedGoogle Scholar
  59. 59.
    Billes SK, Sinnayah P, Cowley MA (2014) Naltrexone/bupropion for obesity: an investigational combination pharmacotherapy for weight loss. Pharmacol Res 84:1–11CrossRefPubMedGoogle Scholar
  60. 60.
    Livingstone C, Rampes H (2006) Lithium: a review of its metabolic adverse effects. J Psychopharmacol 20(3):347–355CrossRefPubMedGoogle Scholar
  61. 61.
    Chen Y, Silverstone T (1990) Lithium and weight gain. Int Clin Psychopharmacol 5(3):217–225CrossRefPubMedGoogle Scholar
  62. 62.
    Sohn M, Moga DC, Blumenschein K, Talbert J (2016) National trends in off-label use of atypical antipsychotics in children and adolescents in the United States. Medicine (Baltimore) 95(23):e3784CrossRefGoogle Scholar
  63. 63.
    Verdoux H, Tournier M, Bégaud B (2010) Antipsychotic prescribing trends: a review of pharmaco-epidemiological studies. Acta Psychiatr Scand 121(1):4–10CrossRefPubMedGoogle Scholar
  64. 64.
    Allison DB, Mentore JL, Heo M et al (1999) Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 156(11):1686–1696PubMedGoogle Scholar
  65. 65.
    Allison DB, Casey DE (2001) Antipsychotic-induced weight gain: a review of the literature. J Clin Psychiatry 62(Suppl 7):22–31PubMedGoogle Scholar
  66. 66.
    Balf G, Stewart DT, Whitehead R, Baker RA (2008) Metabolic adverse events in patients with mental illness treated with antipsychotics: a primary care perspective. Prim Care Companion J Clin Psychiatry 10(1):15–24CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Orsolini L, Tomasetti C, Valchera A et al (2016) An update of safety of clinically used atypical antipsychotics. Expert Opin Drug Saf 15(10):1329–1347CrossRefPubMedGoogle Scholar
  68. 68.
    Correll CU, Manu P, Olshanskiy V, Napolitano B, Kane JM, Malhotra AK (2009) Cardiometabolic risk of second-generation antipsychotic medications during first-time use in children and adolescents. JAMA 302(16):1765–1773CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hoffmann VP, Case M, Stauffer VL, Jacobson JG, Conley RR (2010) Predictive value of early changes in triglycerides and weight for longer-term changes in metabolic measures during olanzapine, ziprasidone or aripiprazole treatment for schizophrenia and schizoaffective disorder post hoc analyses of 3 randomized, controlled trials. J Clin Psychopharmacol 30(6):656–660CrossRefPubMedGoogle Scholar
  70. 70.
    Ascher-Svanum H, Stensland M, Zhao Z, Kinon BJ (2005) Acute weight gain, gender, and therapeutic response to antipsychotics in the treatment of patients with schizophrenia. BMC Psychiatry 5:3CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mitchell AJ, Vancampfort D, Sweers K, van Winkel R, Yu W, De Hert M (2013) Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders—a systematic review and meta-analysis. Schizophr Bull 39(2):306–318CrossRefPubMedGoogle Scholar
  72. 72.
    Holt RI, Peveler RC (2006) Association between antipsychotic drugs and diabetes. Diabetes Obes Metab 8(2):125–135CrossRefPubMedGoogle Scholar
  73. 73.
    De Hert M, Detraux J, van Winkel R, Yu W, Correll CU (2011) Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat Rev Endocrinol 8(2):114–126CrossRefPubMedGoogle Scholar
  74. 74.
    Ballon JS, Pajvani U, Freyberg Z, Leibel RL, Lieberman JA (2014) Molecular pathophysiology of metabolic effects of antipsychotic medications. Trends Endocrinol Metab 25(11):593–600CrossRefPubMedGoogle Scholar
  75. 75.
    Dwyer DS, Donohoe D (2003) Induction of hyperglycemia in mice with atypical antipsychotic drugs that inhibit glucose uptake. Pharmacol Biochem Behav 75(2):255–260CrossRefPubMedGoogle Scholar
  76. 76.
    Daumit GL, Goff DC, Meyer JM et al (2008) Antipsychotic effects on estimated 10-year coronary heart disease risk in the CATIE schizophrenia study. Schizophr Res 105(1–3):175–187CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ben-Menachem E (2007) Weight issues for people with epilepsy—a review. Epilepsia 48(Suppl 9):42–45CrossRefPubMedGoogle Scholar
  78. 78.
    Verrotti A, D’Egidio C, Mohn A, Coppola G, Chiarelli F (2011) Weight gain following treatment with valproic acid: pathogenetic mechanisms and clinical implications. Obes Rev 12(5):e32–e43CrossRefPubMedGoogle Scholar
  79. 79.
    Belcastro V, D’Egidio C, Striano P, Verrotti A (2013) Metabolic and endocrine effects of valproic acid chronic treatment. Epilepsy Res 107(1–2):1–8CrossRefPubMedGoogle Scholar
  80. 80.
    Wong HY, Chu TS, Lai JC et al (2005) Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. J Cell Biochem 96(4):775–785CrossRefPubMedGoogle Scholar
  81. 81.
    Farinelli E, Giampaoli D, Cenciarini A, Cercado E, Verrotti A (2015) Valproic acid and nonalcoholic fatty liver disease: a possible association? World J Hepatol 7(9):1251–1257CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Swann AC (2001) Major system toxicities and side effects of anticonvulsants. J Clin Psychiatry 62(suppl 14):16–21PubMedGoogle Scholar
  83. 83.
    Antel J, Hebebrand J (2012) Weight-reducing side effects of the antiepileptic agents topiramate and zonisamide. Handb Exp Pharmacol 209:433–466CrossRefGoogle Scholar
  84. 84.
    Smith SM, Meyer M, Trinkley KE (2013) Phentermine/topiramate for the treatment of obesity. Ann Pharmacother 47(3):340–349CrossRefPubMedGoogle Scholar
  85. 85.
    Gierisch JM, Nieuwsma JA, Bradford DW et al (2013) Interventions to improve cardiovascular risk factors in people with serious mental illness [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US). Report No.: 13-EHC063-EF. AHRQ Comparative Effectiveness ReviewsGoogle Scholar
  86. 86.
    Green CA, Yarborough BJ, Leo MC et al (2015) The STRIDE weight loss and lifestyle intervention for individuals taking antipsychotic medications: a randomized trial. Obesity (Silver Spring) 23(10):1995–2001CrossRefGoogle Scholar
  87. 87.
    Alvarez-Jiménez M, Hetrick SE, González-Blanch C, Gleeson JF, McGorry PD (2008) Non pharmacological management of antipsychotic-induced weight gain: systematic review and meta analysis of randomised controlled trials. Br J Psychiatry 193(2):101–107CrossRefPubMedGoogle Scholar
  88. 88.
    Newcomer JW, Weiden PJ, Buchanan RW (2013) Switching antipsychotic medications to reduce adverse event burden in schizophrenia: establishing evidence-based practice. J Clin Psychiatry 74(11):1108–1120CrossRefPubMedGoogle Scholar
  89. 89.
    Hasnain M, Vieweg WV (2013) Weight considerations in psychotropic drug prescribing and switching. Postgrad Med 125(5):117–129CrossRefPubMedGoogle Scholar
  90. 90.
    Mukundan A, Faulkner G, Cohn T, Remington G (2010) Antipsychotic switching for people with schizophrenia who have neuroleptic-induced weight or metabolic problems. Cochrane Database Syst Rev (12):CD006629. doi: 10.1002/14651858.CD006629.pub2
  91. 91.
    Mizuno Y, Suzuki T, Nakagawa A et al (2014) Pharmacological strategies to counteract antipsychotic-induced weight gain and metabolic adverse effects in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 40(6):1385–1403CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Zheng W, Li XB, Tang YL, Xiang YQ, Wang CY, de Leon J (2015) Metformin for weight gain and metabolic abnormalities associated with antipsychotic treatment: meta-analysis of randomized placebo-controlled trials. J Clin Psychopharmacol 35(5):499–509CrossRefPubMedGoogle Scholar
  93. 93.
    Hu Y, Young AJ, Ehli EA et al (2014) Metformin and berberine prevent olanzapine-induced weight gain in rats. PLoS One 9(3):e93310CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Ebdrup BH, Knop FK, Ishøy PL et al (2012) Glucagon-like peptide-1 analogs against antipsychotic-induced weight gain: potential physiological benefits. BMC Med 10:92CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Lykkegaard K, Larsen PJ, Vrang N, Bock C, Bock T, Knudsen LB (2008) The once-daily human GLP-1 analog, liraglutide, reduces olanzapine-induced weight gain and glucose intolerance. Schizophr Res 103(1–3):94–103CrossRefPubMedGoogle Scholar
  96. 96.
    Sharma AN, Ligade SS, Sharma JN, Shukla P, Elased KM, Lucot JB (2015) GLP-1 receptor agonist liraglutide reverses long-term atypical antipsychotic treatment associated behavioral depression and metabolic abnormalities in rats. Metab Brain Dis 30(2):519–527CrossRefPubMedGoogle Scholar
  97. 97.
    Larsen JR, Vedtofte L, Jakobsen MSL et al (2017) Effect of liraglutide treatment on prediabetes and overweight or obesity in clozapine-or olanzapine-treated patients with schizophrenia spectrum disorder: a randomized clinical trial. JAMA Psychiatry. doi: 10.1001/jamapsychiatry.2017.1220 PubMedGoogle Scholar
  98. 98.
    Müller N (2010) COX-2 inhibitors as antidepressants and antipsychotics: clinical evidence. Curr Opin Investig Drugs 11(1):31–42PubMedGoogle Scholar
  99. 99.
    Gross C, Blasey CM, Roe RL, Belanoff JK (2010) Mifepristone reduces weight gain and improves metabolic abnormalities associated with risperidone treatment in normal men. Obesity (Silver Spring.) 18(12):2295–2300CrossRefGoogle Scholar
  100. 100.
    Belanoff JK, Blasey CM, Clark RD, Roe RL (2010) Selective glucocorticoid receptor (type II) antagonist prevents and reverses olanzapine-induced weight gain. Diabetes Obes Metab 12(6):545–547CrossRefPubMedGoogle Scholar
  101. 101.
    Rimessi A, Pavan C, Ioannidi E et al (2017) Protein kinase C β: a new target therapy to prevent the long-term atypical antipsychotic-induced weight gain. Neuropsychopharmacology 42(7):1491–1501CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2017

Authors and Affiliations

  1. 1.Department Endocrinology, Diabetology and MetabolismAntwerp University HospitalEdegemBelgium
  2. 2.Department of EndocrinologyZNA-Jan PalfijnAntwerpBelgium

Personalised recommendations