Skip to main content

Advertisement

Log in

The relationship between circulating adiponectin, leptin and vaspin with bone mineral density (BMD), arterial calcification and stiffness: a cross-sectional study in post-menopausal women

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective

To explore the relationship between circulating adiponectin, leptin and vaspin with bone mineral density (BMD), arterial stiffness and vascular calcification in post-menopausal women. We hypothesised that adipokines produced by adipose tissue may be mediators of bone and cardiovascular disease (CVD) and explain, in part, the observed association between osteoporosis and CVD.

Design

We studied 386 ambulant community dwelling postmenopausal women aged (mean [SD] 61 [6.4] years). BMD at the lumbar spine, femoral neck (FN), and total hip (TH), body composition; fat mass (FM) and lean mass (LM) as well as abdominal aortic calcification (AAC) were determined by dual energy X-ray absorptiometry. Pulse wave velocity (PWV) and augmentation index, markers of arterial stiffness were measured. Fasting adiponectin, leptin and vaspin were quantified in serum.

Results

A positive independent association was observed between vaspin and BMD at the FN (p = 0.009), TH (p = 0.037) in the whole study population adjusted for confounders including age, FM, LM and lifestyle variables. Using the same model, a negative association was seen between adiponectin and BMD at the FN in women with osteoporosis (p = 0.043). Serum adiponectin was significantly higher in women with fractures (20.8 [9.3] µg/ml compared to those without (18.5 [8.6] µg/ml, p = 0.018) and associated with a significant increased risk of fracture (HR 1.032, 95% CI 1.003–1.063, p = 0.032). Leptin was not associated with BMD or fracture risk after adjustment. Adiponectin was independently associated with AAC (p = 0.007) and significantly higher in women with AAC scores > 1; (19.2[9.2]) compared to those with no or low AAC scores (<1); 16.8 [8.0], p = 0.018). In adjusted analyses, PWV velocity was positively associated with circulating vaspin (p = 0.039) and AI was negatively associated with serum leptin (p = 0.002).

Conclusion

Adiponectin, leptin, vaspin are related to markers of bone and vascular health and may contribute to the observed association between osteoporosis and CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lampropoulos CE, Papaioannou I, D’Cruz DP (2012) Osteoporosis–a risk factor for cardiovascular disease? Nat Rev Rheumatol 8(10):587–598

    Article  CAS  PubMed  Google Scholar 

  2. von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 106(3):273–278

    Article  PubMed  Google Scholar 

  3. Buckens CF, de Jong PA, Verkooijen HM, Verhaar HJ, Mali WP, van der Graaf Y et al (2015) Vertebral fractures on routine chest computed tomography: relation with arterial calcifications and future cardiovascular events. Int J Cardiovasc Imaging 31(2):437–445

    Article  PubMed  Google Scholar 

  4. Vassalle C, Mazzone A (2016) Bone loss and vascular calcification: A bi-directional interplay? Vascul Pharmacol 86:77–86

    Article  CAS  PubMed  Google Scholar 

  5. Evenepoel P, D’Haese P, Brandenburg V (2015) Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int 88(2):235–240

    Article  CAS  PubMed  Google Scholar 

  6. Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19(5):595–606

    Article  CAS  PubMed  Google Scholar 

  7. Armstrong ME, Cairns BJ, Banks E, Green J, Reeves GK, Beral V et al (2012) Different effects of age, adiposity and physical activity on the risk of ankle, wrist and hip fractures in postmenopausal women. Bone 50(6):1394–1400

    Article  PubMed  PubMed Central  Google Scholar 

  8. Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J (2010) Obesity and fractures in postmenopausal women. J Bone Miner Res 25(2):292–297

    Article  PubMed  Google Scholar 

  9. Ebong IA, Goff DC Jr, Rodriguez CJ, Chen H, Bluemke DA, Szklo M et al (2013) The relationship between measures of obesity and incident heart failure: the multi-ethnic study of atherosclerosis. Obesity (Silver Spring) 21(9):1915–1922

    Google Scholar 

  10. Mitchell GF, Guo CY, Benjamin EJ, Larson MG, Keyes MJ, Vita JA et al (2007) Cross-sectional correlates of increased aortic stiffness in the community: the Framingham Heart Study. Circulation 115(20):2628–2636

    Article  PubMed  Google Scholar 

  11. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89(6):2548–2556

    Article  CAS  PubMed  Google Scholar 

  12. Pepe J, Cipriani C, Cilli M, Colangelo L, Minisola S (2016) Adipokines and bone metabolism: an interplay to untangle. J Endocrinol Invest 39(11):1359–1361

    Article  CAS  PubMed  Google Scholar 

  13. Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I et al (2011) Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 96(9):2703–2713

    Article  CAS  PubMed  Google Scholar 

  14. Richards JB, Valdes AM, Burling K, Perks UC, Spector TD (2007) Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab 92(4):1517–1523

    Article  CAS  PubMed  Google Scholar 

  15. Napoli N, Pedone C, Pozzilli P, Lauretani F, Ferrucci L, Incalzi RA (2010) Adiponectin and bone mass density: the InCHIANTI study. Bone 47(6):1001–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Song CY, Wu SS, Liang QH, Yuan LQ, Liao EY (2013) Novel adipokines and bone metabolism. Int J Endocrinol 2013:895045

    PubMed  PubMed Central  Google Scholar 

  17. Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B et al (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17(6):901–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J et al (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331(2):520–526

    Article  CAS  PubMed  Google Scholar 

  19. Williams GA, Wang Y, Callon KE, Watson M, Lin JM, Lam JB et al (2009) In vitro and in vivo effects of adiponectin on bone. Endocrinology 150(8):3603–3610

    Article  CAS  PubMed  Google Scholar 

  20. Zhu X, Jiang Y, Shan PF, Shen J, Liang QH, Cui RR et al (2013) Vaspin attenuates the apoptosis of human osteoblasts through ERK signaling pathway. Amino Acids 44(3):961–968

    Article  CAS  PubMed  Google Scholar 

  21. Kamio N, Kawato T, Tanabe N, Kitami S, Morita T, Ochiai K et al (2013) Vaspin attenuates RANKL-induced osteoclast formation in RAW264.7 cells. Connect Tissue Res 54(2):147–152

    Article  CAS  PubMed  Google Scholar 

  22. Mattu HS, Randeva HS (2013) Role of adipokines in cardiovascular disease. J Endocrinol 216(1):T17–T36

    Article  CAS  PubMed  Google Scholar 

  23. Cao Y, Tao L, Yuan Y, Jiao X, Lau WB, Wang Y et al (2009) Endothelial dysfunction in adiponectin deficiency and its mechanisms involved. J Mol Cell Cardiol 46(3):413–419

    Article  CAS  PubMed  Google Scholar 

  24. Maahs DM, Ogden LG, Kinney GL, Wadwa P, Snell-Bergeon JK, Dabelea D et al (2005) Low plasma adiponectin levels predict progression of coronary artery calcification. Circulation 111(6):747–753

    Article  CAS  PubMed  Google Scholar 

  25. Johansen NB, Vistisen D, Brunner EJ, Tabak AG, Shipley MJ, Wilkinson IB et al (2012) Determinants of aortic stiffness: 16-year follow-up of the Whitehall II study. PLoS ONE 7(5):e37165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dekker JM, Funahashi T, Nijpels G, Pilz S, Stehouwer CD, Snijder MB et al (2008) Prognostic value of adiponectin for cardiovascular disease and mortality. J Clin Endocrinol Metab 93(4):1489–1496

    Article  CAS  PubMed  Google Scholar 

  27. Zachariah JP, Hwang S, Hamburg NM, Benjamin EJ, Larson MG, Levy D et al (2016) Circulating adipokines and vascular function: cross-sectional associations in a community-based cohort. Hypertension 67(2):294–300

    CAS  PubMed  Google Scholar 

  28. Soderberg S, Ahren B, Jansson JH, Johnson O, Hallmans G, Asplund K et al (1999) Leptin is associated with increased risk of myocardial infarction. J Intern Med 246(4):409–418

    Article  CAS  PubMed  Google Scholar 

  29. Sawicka M, Janowska J, Chudek J (2016) Potential beneficial effect of some adipokines positively correlated with the adipose tissue content on the cardiovascular system. Int J Cardiol 222:581–589

    Article  PubMed  Google Scholar 

  30. Hampson G, Edwards S, Conroy S, Blake GM, Fogelman I, Frost ML (2013) The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone 56(1):42–47

    Article  CAS  PubMed  Google Scholar 

  31. Spangenberg A, Maghsoodi N, Dulnoan D, Moore AE, Edwards S, Frost ML et al (2016) Bone mineral density and body composition are associated with circulating angiogenic factors in post-menopausal women. Calcif Tissue Int 99(6):608–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55(13):1318–1327

    Article  PubMed  Google Scholar 

  33. Tomiyama H, Yamashina A (2010) Non-invasive vascular function tests: their pathophysiological background and clinical application. Circ J 74(1):24–33

    Article  PubMed  Google Scholar 

  34. Terzoudis S, Malliaraki N, Damilakis J, Dimitriadou DA, Zavos C, Koutroubakis IE (2016) Chemerin, visfatin, and vaspin serum levels in relation to bone mineral density in patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol 28(7):814–819

    Article  CAS  PubMed  Google Scholar 

  35. Assadi M, Salimipour H, Akbarzadeh S, Nemati R, Jafari SM, Bargahi A et al (2011) Correlation of circulating omentin-1 with bone mineral density in multiple sclerosis: the crosstalk between bone and adipose tissue. PLoS ONE 6(9):e24240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hida K, Wada J, Eguchi J, Zhang H, Baba M, Seida A et al (2005) Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA 102(30):10610–10615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I (2016) Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med 14:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Locatelli V, Bianchi VE (2014) Effect of GH/IGF-1 on bone metabolism and osteoporsosis. Int J Endocrinol 2014:235060

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mpalaris V, Anagnostis P, Anastasilakis AD, Goulis DG, Doumas A, Iakovou I (2016) Serum leptin, adiponectin and ghrelin concentrations in post-menopausal women: Is there an association with bone mineral density? Maturitas 88:32–36

    Article  CAS  PubMed  Google Scholar 

  40. Johansson H, Oden A, Lerner UH, Jutberger H, Lorentzon M, Barrett-Connor E et al (2012) High serum adiponectin predicts incident fractures in elderly men: osteoporotic fractures in men (MrOS) Sweden. J Bone Miner Res 27(6):1390–1396

    Article  CAS  PubMed  Google Scholar 

  41. Araneta MR, von Muhlen D, Barrett-Connor E (2009) Sex differences in the association between adiponectin and BMD, bone loss, and fractures: the Rancho Bernardo study. J Bone Miner Res 24(12):2016–2022

    Article  PubMed  PubMed Central  Google Scholar 

  42. Modder UI, Roforth MM, Hoey K, McCready LK, Peterson JM, Monroe DG et al (2011) Effects of estrogen on osteoprogenitor cells and cytokines/bone-regulatory factors in postmenopausal women. Bone 49(2):202–207

    Article  PubMed  PubMed Central  Google Scholar 

  43. Steffes MW, Gross MD, Lee DH, Schreiner PJ, Jacobs DR Jr (2006) Adiponectin, visceral fat, oxidative stress, and early macrovascular disease: the Coronary Artery Risk Development in Young Adults Study. Obesity (Silver Spring) 14(2):319–326

    Article  CAS  Google Scholar 

  44. Choi SH, Kwak SH, Lee Y, Moon MK, Lim S, Park YJ et al (2011) Plasma vaspin concentrations are elevated in metabolic syndrome in men and are correlated with coronary atherosclerosis in women. Clin Endocrinol (Oxf) 75(5):628–635

    Article  CAS  Google Scholar 

  45. Karbek B, Bozkurt NC, Topaloglu O, Aslan MS, Gungunes A, Cakal E et al (2014) Relationship of vaspin and apelin levels with insulin resistance and atherosclerosis in metabolic syndrome. Minerva Endocrinol 39(2):99–105

    CAS  PubMed  Google Scholar 

  46. Dimova R, Tankova T (2015) The role of vaspin in the development of metabolic and glucose tolerance disorders and atherosclerosis. Biomed Res Int 2015:823481

    Article  PubMed  PubMed Central  Google Scholar 

  47. Matsuda K, Teragawa H, Fukuda Y, Nakagawa K, Higashi Y, Chayama K (2003) Leptin causes nitric-oxide independent coronary artery vasodilation in humans. Hypertens Res 26(2):147–152

    Article  CAS  PubMed  Google Scholar 

  48. Garonna E, Botham KM, Birdsey GM, Randi AM, Gonzalez-Perez RR, Wheeler-Jones CP (2011) Vascular endothelial growth factor receptor-2 couples cyclo-oxygenase-2 with pro-angiogenic actions of leptin on human endothelial cells. PLoS ONE 6(4):e18823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Al Mheid I, Patel R, Murrow J, Morris A, Rahman A, Fike L et al (2011) Vitamin D status is associated with arterial stiffness and vascular dysfunction in healthy humans. J Am Coll Cardiol 58(2):186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hampson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Ethical approval was obtained from the St Thomas’ Hospital Research Ethics Committee and the study was carried out in accordance with the Helsinki’s declaration.

Informed consent

Written informed consent was obtained from each volunteer before entry into the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanna, N., Patel, K., Moore, A.E. et al. The relationship between circulating adiponectin, leptin and vaspin with bone mineral density (BMD), arterial calcification and stiffness: a cross-sectional study in post-menopausal women. J Endocrinol Invest 40, 1345–1353 (2017). https://doi.org/10.1007/s40618-017-0711-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0711-1

Keywords

Navigation