Skip to main content

Advertisement

Log in

The steroid response to human chorionic gonadotropin (hCG) stimulation in men with Klinefelter syndrome does not change using immunoassay or mass spectrometry

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Liquid-chromatography tandem mass-spectrometry (LC-MS/MS) was developed in parallel to Immunoassays (IAs) and today is proposed as the “gold standard” for steroid assays. Leydig cells of men with Klinefelter syndrome (KS) are able to respond to human chorionic gonadotropin (hCG) stimulation, even if testosterone (T) production was impaired. The aim was to evaluate how results obtained by IAs and LC-MS/MS can differently impact on the outcome of a clinical research on gonadal steroidogenesis after hCG stimulation.

Methods

A longitudinal, prospective, case-control clinical trial. (clinicaltrial.gov NCT02788136) was carried out, enrolling KS men and healthy age-matched controls, stimulated by hCG administration. Serum steroids were evaluated at baseline and for 5 days after intramuscular injection of 5000 IU hCG using both IAs and LC-MS/MS.

Results

13 KS patients (36 ± 9 years) not receiving T replacement therapy and 14 controls (32 ± 8 years) were enrolled. T, progesterone, cortisol, 17-hydroxy-progesterone (17OHP) and androstenedione, were significantly higher using IAs than LC-MS/MS. IAs and LC-MS/MS showed direct correlation for all five steroids, although the constant overestimation detected by IAs. Either methodology found the same 17OHP and T increasing profile after hCG stimulation, with equal areas under the curves (AUCs).

Conclusions

Although a linearity between IA and LC-MS/MS is demonstrated, LC-MS/MS is more sensitive and accurate, whereas IA shows a constant overestimation of sex steroid levels. This result suggests the need of reference intervals built on the specific assay. This fundamental difference between these two methodologies opens a deep reconsideration of what is needed to improve the accuracy of steroid hormone assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taylor AE, Keevil B, Huhtaniemi IT (2015) Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow. Eur J Endocrinol Eur Fed Endocr Soc 173(2):D1–D12. doi:10.1530/eje-15-0338

    Article  CAS  Google Scholar 

  2. Schoenheimer R, Rittenberg D (1935) Deuterium as an indicator in the study of intermediary metabolism. Science 82(2120):156–157. doi:10.1126/science.82.2120.156

    Article  CAS  PubMed  Google Scholar 

  3. Shackleton C (2010) Clinical steroid mass spectrometry: a 45-year history culminating in HPLC-MS/MS becoming an essential tool for patient diagnosis. J Steroid Biochem Mol Biol 121(3–5):481–490. doi:10.1016/j.jsbmb.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  4. Handelsman DJ, Wartofsky L (2013) Requirement for mass spectrometry sex steroid assays in the journal of clinical endocrinology metabolism. J Clin Endocrinol Metab 98(10):3971–3973. doi:10.1210/jc.2013-3375

    Article  CAS  PubMed  Google Scholar 

  5. Wierman ME, Auchus RJ, Haisenleder DJ, Hall JE, Handelsman D, Hankinson S, Rosner W, Singh RJ, Sluss PM, Stanczyk FZ (2014) Editorial: the new instructions to authors for the reporting of steroid hormone measurements. J Clin Endocrinol Metab 99(12):4375. doi:10.1210/jc.2014-3424

    Article  CAS  PubMed  Google Scholar 

  6. Monaghan PJ, Keevil BG, Stewart PM, Trainer PJ (2014) Case for the wider adoption of mass spectrometry-based adrenal steroid testing, and beyond. J Clin Endocrinol Metab 99(12):4434–4437. doi:10.1210/jc.2014-2258

    Article  CAS  PubMed  Google Scholar 

  7. Botelho JC, Shacklady C, Cooper HC, Tai SS, Van Uytfanghe K, Thienpont LM, Vesper HW (2013) Isotope-dilution liquid chromatography-tandem mass spectrometry candidate reference method for total testosterone in human serum. Clin Chem 59(2):372–380. doi:10.1373/clinchem.2012.190934

    Article  CAS  PubMed  Google Scholar 

  8. Hoofnagle AN, Wener MH (2009) The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods 347(1–2):3–11. doi:10.1016/j.jim.2009.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosner W, Auchus RJ, Azziz R, Sluss PM, Raff H (2007) Position statement: utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement. J Clin Endocrinol Metab 92(2):405–413. doi:10.1210/jc.2006-1864

    Article  CAS  PubMed  Google Scholar 

  10. Fanelli F, Belluomo I, Di Lallo VD, Cuomo G, De Iasio R, Baccini M, Casadio E, Casetta B, Vicennati V, Gambineri A, Grossi G, Pasquali R, Pagotto U (2011) Serum steroid profiling by isotopic dilution-liquid chromatography-mass spectrometry: comparison with current immunoassays and reference intervals in healthy adults. Steroids 76(3):244–253. doi:10.1016/j.steroids.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  11. Simoni M, Fanelii F, Roli L UP (2012) Methodology for measuring testosterone, dihydrotestosterone and sex-hormone-binding globulin in a clinical setting. In: Nieschlag E, HBehre HM (eds) Testosterone, vol 4. Cambridge

  12. Buttler RM, Martens F, Fanelli F, Pham HT, Kushnir MM, Janssen MJ, Owen L, Taylor AE, Soeborg T, Blankenstein MA, Heijboer AC (2015) Comparison of 7 published LC-MS/MS methods for the simultaneous measurement of testosterone, androstenedione, and dehydroepiandrosterone in serum. Clin Chem 61(12):1475–1483. doi:10.1373/clinchem.2015.242859

    Article  PubMed  Google Scholar 

  13. Owen LJ, Wu F, Buttler R, Keevil BG (2015) Annals express: a direct assay for the routine measurement of testosterone, androstenedione, dihydrotestosterone and dehydroepiandrosterone by LC-MS/MS. Ann Clin Biochem. doi:10.1177/0004563215621096

    Google Scholar 

  14. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E (2004) Klinefelter’s syndrome. Lancet (London, England) 364(9430):273–283. doi:10.1016/s0140-6736(04)16678-6

    Article  CAS  Google Scholar 

  15. Bonomi M, Rochira V, Pasquali D, Balercia G, Jannini EA, Ferlin A (2017) Klinefelter syndrome (KS): genetics, clinical phenotype and hypogonadism. J Endocrinol Invest 40(2):123–134. doi:10.1007/s40618-016-0541-6

    Article  CAS  PubMed  Google Scholar 

  16. Aksglaede L, Juul A (2013) Testicular function and fertility in men with Klinefelter syndrome: a review. Eur J Endocrinol Eur Fed Endocr Soc 168(4):R67–R76. doi:10.1530/eje-12-0934

    Article  CAS  Google Scholar 

  17. Host C, Skakkebaek A, Groth KA, Bojesen A (2014) The role of hypogonadism in Klinefelter syndrome. Asian J Androl 16(2):185–191. doi:10.4103/1008-682x.122201

    Article  PubMed  PubMed Central  Google Scholar 

  18. Belli S, Santi D, Leoni E, Dall’Olio E, Fanelli F, Mezzullo M, Pelusi C, Roli L, Tagliavini S, Trenti T, Granata ARM, Pagotto U, Pasquali R, Rochira V, Carani C, Simoni M (2016) Human chorionic gonadotropin stimulation gives evidence of differences in testicular steroidogenesis in Klinefelter syndrome, as assessed by liquid chromatography–tandem mass spectrometry. Eur J Endocrinol 174:1–11. doi:10.1530/EJE-15-1224

    Article  Google Scholar 

  19. Passing H, Bablok (1983) A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, Part I. J Clin Chem Clin Biochem Zeitschrift fur klinische Chemie klinische Biochemie 21(11):709–720

    CAS  Google Scholar 

  20. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160

    Article  CAS  PubMed  Google Scholar 

  21. Bilic-Zulle L (2011) Comparison of methods: passing and bablok regression. Biochem Med 21(1):49–52

    Article  Google Scholar 

  22. Fitzgerald RL, Herold DA (1996) Serum total testosterone: immunoassay compared with negative chemical ionization gas chromatography-mass spectrometry. Clin Chem 42(5):749–755

    CAS  PubMed  Google Scholar 

  23. Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM (2010) Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 95(6):2536–2559. doi:10.1210/jc.2009-2354

    Article  CAS  PubMed  Google Scholar 

  24. Lunenfeld B, Mskhalaya G, Kalinchenko S, Tishova Y (2013) Recommendations on the diagnosis, treatment and monitoring of late-onset hypogonadism in men - a suggested update. Aging Male Off J Int Soc Study Aging Male 16(4):143–150. doi:10.3109/13685538.2013.853731

    Article  Google Scholar 

  25. Teede H, Deeks A, Moran L (2010) Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med 8:41. doi:10.1186/1741-7015-8-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tosi F, Fiers T, Kaufman JM, Dall’Alda M, Moretta R, Giagulli VA, Bonora E, Moghetti P (2015) Implications of androgen assay accuracy in the phenotyping of women with polycystic ovary syndrome. J Clin Endocrinol Metab jc20152807. doi:10.1210/jc.2015-2807

    Google Scholar 

  27. Farquhar C, Rishworth JR, Brown J, Nelen WL, Marjoribanks J (2014) Assisted reproductive technology: an overview of Cochrane reviews. Cochrane Database System Rev 12:CD010537. doi:10.1002/14651858.CD010537.pub3

    Google Scholar 

  28. Fauser BC, Devroey P, Macklon NS (2005) Multiple birth resulting from ovarian stimulation for subfertility treatment. Lancet (London, England) 365(9473):1807–1816. doi:10.1016/s0140-6736(05)66478-1

    Article  Google Scholar 

  29. Schuring AN, Kelsch R, Pierscinski G, Nofer JR (2016) Establishing reference intervals for sex hormones on the analytical platforms advia centaur and immulite 2000XP. Ann Lab Med 36(1):55–59. doi:10.3343/alm.2016.36.1.55

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

DS is a PhD fellow of the Doctorate School in Clinical and Experimental Medicine of the University of Modena and Reggio Emilia, Italy. LC-MS/MS assays were performed thanks to Emilia-Romagna Region, Alessandro Liberati Young Researcher Grants, PRUA 1-2012-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Santi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Ethical approval

The study protocol was approved by the Ethics Committee of Modena (File nr. 04/12).

Informed consent

Written informed consent was obtained from all participants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 KB)

Supplementary material 2 (DOC 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roli, L., Santi, D., Belli, S. et al. The steroid response to human chorionic gonadotropin (hCG) stimulation in men with Klinefelter syndrome does not change using immunoassay or mass spectrometry. J Endocrinol Invest 40, 841–850 (2017). https://doi.org/10.1007/s40618-017-0653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0653-7

Keywords

Navigation