Skip to main content

Advertisement

Log in

Influence of segmental body composition and adiposity hormones on resting metabolic rate and substrate utilization in overweight and obese adults

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Low resting metabolic rate (RMR) and high carbohydrate reliance at rest are associated with weight gain, but are highly variable in obese individuals. This study determined the relationship of total and segmental body composition and adiposity hormones with RMR and respiratory exchange ratio (RER) in overweight and obese adults.

Methods

In 49 men (n = 23) and premenopausal women (n = 26) [mean ± SD; age = 35.0 ± 8.9 years; body mass index (BMI) = 33.6 ± 5.2 kg·m−2; percent body fat (%fat) = 40.0 ± 8.0%], RMR and RER were evaluated using indirect calorimetry. Total and segmental body composition [fat mass (FM), percent fat (%fat), lean mass (LM), visceral adipose tissue (VAT)] were estimated using dual-energy X-ray absorptiometry. Fasted blood and saliva samples were analyzed for insulin, leptin, estradiol, and cortisol.

Results

In men (M) and women (W), RMR significantly correlated (p < 0.05) with FM (M: R = 0.535; W: R = 0.784) and LM (M: R = 0.645; W: R = 0.867). Of the segmental measures, trunk LM (M: R = 0.593; W: R = 0.879; p < 0.05) and leg LM (M: R = 0.664; W: R = 0.821; p < 0.05) had the strongest correlations with RMR. In men, but not women, RER significantly correlated with FM (R = 0.449; p = 0.032), trunk FM (R = 0.501; p = 0.015), and VAT (R = 0.456; p = 0.029). In men, RMR positively correlated with cortisol (R = 0.430, p = 0.040) and estradiol (R = 0.649, p = 0.001) and RER positively correlated with insulin (R = 0.525, p = 0.010). In women, RMR positively correlated with insulin (R = 0.570, p = 0.006), but RER was not significantly correlated with hormones (p > 0.05).

Conclusions

Segmental evaluation of body composition, specifically in the lower extremities and abdomen, may be an effective and efficient way to evaluate metabolic status. Sex-specific evaluations are also imperative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ravussin E, Gautier JF (1999) Metabolic predictors of weight gain. Int J Obes Relat Metab Disord 23(Suppl 1):37–41

    Article  PubMed  Google Scholar 

  2. Piaggi P, Thearle MS, Bogardus C, Krakoff J (2013) Lower energy expenditure predicts long-term increases in weight and fat mass. J Clin Endocrinol Metab 98(4):E703–E707. doi:10.1210/jc.2012-3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba B, Raz I, Saad M, Swinburn B, Knowler WC, Bogardus C, Ravussin E (1990) Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol Endocrinol Metab 259(5):E650–E657

    CAS  Google Scholar 

  4. Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR (2005) Factor influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin or triiodothyronine. Am J Clin Nutr 82(5):941–948

    CAS  PubMed  Google Scholar 

  5. Weyer C, Snitker S, Rising R, Bogardus C, Ravussin E (1999) Determinants of energy expenditure and fuel utilization in man: effects of body composition, age, sex, ethnicity and glucose tolerance in 916 subjects. Int J Obes Relat Metab Disord 23(7):715–722

    Article  CAS  PubMed  Google Scholar 

  6. Astrup A, Buemann B, Christensen NJ, Madsen J, Gluud C, Bennett P, Svenstrup B (1992) The contribution of body composition, substrates, and hormones to the variability in energy expenditure and substrate utilization in premenopausal women. J Clin Endocrinol Metab 74(2):279–286. doi:10.1210/jcem.74.2.1530952

    CAS  PubMed  Google Scholar 

  7. Bosy-Westphal A, Muller MJ, Boschmann M, Klaus S, Kreymann G, Luhrmann PM, Neuhauser-Berthold M, Noack R, Pirke KM, Platte P, Selberg O, Steiniger J (2009) Grade of adiposity affects the impact of fat mass on resting energy expenditure in women. Br J Nutr 101(4):474–477

    Article  CAS  PubMed  Google Scholar 

  8. Shook RP, Hand GA, Paluch A, Wang X, Moran R, Hébert J, Jakicic J, Blair S (2015) High respiratory quotient is associated with increases in body weight and fat mass in young adults. Eur J Clin Nutr 1–6. doi:10.1038/ejcn.2015.198

  9. Kelley DE (2005) Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest 115(7):1699–1702. doi:10.1172/JCI25758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dulloo AG, Jacquet J, Solinas G, Montani JP, Schutz Y (2010) Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes 34(Suppl 2):S4–S17. doi:10.1038/ijo.2010.234

    Article  Google Scholar 

  11. Carneiro IP, Elliott SA, Siervo M, Padwal R, Bertoli S, Battezzati A, Prado CM (2016) Is Obesity associated with altered energy expenditure? Adv Nutr Int Rev J 7 (3):476–487

    Article  CAS  Google Scholar 

  12. Buffington CK, Cowan GS Jr, Scruggs D, Smith H (1995) The effects of fat distribution on resting energy expenditure in premenopausal morbidly obese females. Obesity surgery 5(1):11–17. doi:10.1381/096089295765558088

    Article  CAS  PubMed  Google Scholar 

  13. Serfaty D, Rein M, Schwarzfuchs D, Shelef I, Gepner Y, Bril N, Cohen N, Shemesh E, Sarusi B, Kovsan J, Kenigsbuch S, Chassidim Y, Golan R, Witkow S, Henkin Y, Stampfer MJ, Rudich A, Shai I (2016) Abdominal fat sub-depots and energy expenditure: Magnetic resonance imaging study. Clin Nutr. doi:10.1016/j.clnu.2016.05.009

    Google Scholar 

  14. Booth A, Magnuson A, Foster M (2014) Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Hormone molecular biology clinical investigation 17(1):13–27. doi:10.1515/hmbci-2014-0009

    Article  CAS  PubMed  Google Scholar 

  15. Colberg SR, Simoneau J, Thaete F, Kelley D (1995) Skeletal muscle utilization of free fatty acids in women with visceral obesity. J Clin Invest 95(4):1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi H, Seeley RJ, Clegg DJ (2009) Sexual differences in the control of energy homeostasis. Front Neuroendocrinol 30(3):396–404. doi:10.1016/j.yfrne.2009.03.004S0091-3022(09)00006-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wright TG, Dawson B, Jalleh G, Guelfi KJ (2015) Influence of hormonal profile on resting metabolic rate in normal, overweight and obese individuals. Ann Nutr Metabo 66(2–3):162–167. doi:10.1159/000382080

    Article  CAS  Google Scholar 

  18. Pradhan AD (2014) Sex differences in the metabolic syndrome: implications for cardiovascular health in women. Clin Chem 60(1):44–52. doi:10.1373/clinchem.2013.202549

    Article  CAS  PubMed  Google Scholar 

  19. Brochu M, Tchernof A, Dionne IJ, Sites CK, Eltabbakh GH, Sims EA, Poehlman ET (2001) What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women? J Clin Endocrinol Metab 86(3):1020–1025. doi:10.1210/jcem.86.3.7365

    CAS  PubMed  Google Scholar 

  20. Ellis AC, Hyatt TC, Hunter GR, Gower BA (2010) Respiratory quotient predicts fat mass gain in premenopausal women. Obesity 18(12):2255–2259. doi:10.1038/oby.2010.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84(3):475–482

    CAS  PubMed  Google Scholar 

  22. Fukushima Y, Kurose S, Shinno H, Cao Thu H, Takao N, Tsutsumi H, Kimura Y (2016) Importance of lean muscle maintenance to improve insulin resistance by body weight reduction in female patients with obesity. Diabetes Metab J 40(2):147–153. doi:10.4093/dmj.2016.40.2.147

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bouchard DR, Soucy L, Senechal M, Dionne IJ, Brochu M (2009) Impact of resistance training with or without caloric restriction on physical capacity in obese older women. Menopause 16(1):66–72. doi:10.1097/gme.0b013e31817dacf7

    Article  PubMed  Google Scholar 

  24. Kistorp CN, Toubro S, Astrup A, Svendsen OL (2000) Measurements of body composition by dual-energy X-ray absorptiometry improve prediction of energy expenditure. Ann N Y Acad Sci 904:79–84

    Article  CAS  PubMed  Google Scholar 

  25. Svendsen OL, Hassager C, Christiansen C (1993) Impact of regional and total body composition and hormones on resting energy expenditure in overweight postmenopausal women. Metabolism 42(12):1588–1591

    Article  CAS  PubMed  Google Scholar 

  26. Muller MJ, Illner K, Bosy-Westphal A, Brinkmann G, Heller M (2001) Regional lean body mass and resting energy expenditure in non-obese adults. Eur J Nutr 40(3):93–97

    Article  CAS  PubMed  Google Scholar 

  27. Yagi S, Kadota M, Aihara K, Nishikawa K, Hara T, Ise T, Ueda Y, Iwase T, Akaike M, Shimabukuro M, Katoh S, Sata M (2014) Association of lower limb muscle mass and energy expenditure with visceral fat mass in healthy men. Diabetol Metab Syndr 6(1):27. doi:10.1186/1758-5996-6-271758-5996-6-27

    Article  PubMed  PubMed Central  Google Scholar 

  28. Murphy RA, Reinders I, Garcia ME, Eiriksdottir G, Launer LJ, Benediktsson R, Gudnason V, Jonsson PV, Harris TB (2014) Adipose tissue, muscle, and function: potential mediators of associations between body weight and mortality in older adults with type 2 diabetes. Diabetes Care 37(12):3213–3219. doi:10.2337/dc14-0293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51(11):1602–1609

    Article  PubMed  Google Scholar 

  30. Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, Brychta R, Chen KY, Skarulis MC, Walter M, Walter PJ, Hall KD (2016) Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity. doi:10.1002/oby.21538

    PubMed  Google Scholar 

  31. Hirsch KR, Smith-Ryan AE, Blue MN, Mock MG, Trexler ET, Ondrak KS (2016) Metabolic characterization of overweight and obese adults. Phys Sports Med. doi:10.1080/00913847.2016.1248222

    Google Scholar 

  32. Dennis BH (1999) Well-controlled diet studies in humans : a practical guide to design and management. American Dietetic Association, Chicago

    Google Scholar 

  33. Health HSoP (2011) Healthy Eating Plate & Healthy Eating Pyramid. Harvard University. https://www.hsph.harvard.edu/nutritionsource/healthy-eating-plate/

  34. Gore CJ, Withers RT (1990) The effect of exercise intensity and duration on the oxygen deficit and excess post-exercise oxygen consumption. Eur J Appl Physiol Occup Physiol 60(3):169–174

    Article  CAS  PubMed  Google Scholar 

  35. Wingfield HL, Smith-Ryan AE, Melvin MN, Roelofs EJ, Trexler ET, Hackney AC, Weaver MA, Ryan ED (2015) The acute effect of exercise modality and nutrition manipulations on post-exercise resting energy expenditure and respiratory exchange ratio in women: a randomized trial. Sports Med Open 2. doi:10.1186/s40798-015-0010-3

    Google Scholar 

  36. Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, Ergun DL (2012) Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity 20(6):1313–1318

    Article  PubMed  PubMed Central  Google Scholar 

  37. Senechal M, McGavock JM, Church TS, Lee DC, Earnest CP, Sui X, Blair SN (2014) Cut points of muscle strength associated with metabolic syndrome in men. Med Sci Sports Exerc 46(8):1475–1481. doi:10.1249/MSS.0000000000000266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prior SJ, Ryan AS, Stevenson TG, Goldberg AP (2014) Metabolic inflexibility during submaximal aerobic exercise is associated with glucose intolerance in obese older adults. Obesity 22(2):451–457

    Article  CAS  PubMed  Google Scholar 

  39. Goodpaster BH, Theriault R, Watkins SC, Kelley DE (2000) Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism 49(4):467–472

    Article  CAS  PubMed  Google Scholar 

  40. Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE (1999) Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J 13(14):2051–2060

    CAS  PubMed  Google Scholar 

  41. Hedrington MS, Davis SN (2015) Sexual dimorphism in glucose and lipid metabolism during fasting, hypoglycemia, and exercise. Front Endocrinol 6(61):1–6

    Google Scholar 

  42. Schneider G, Kirschner MA, Berkowitz R, Ertel NH (1979) Increased estrogen production in obese men. J Clin Endocrinol Metab 48(4):633–638. doi:10.1210/jcem-48-4-633

    Article  CAS  PubMed  Google Scholar 

  43. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrin Metab 89(6):2548–2556

    Article  CAS  Google Scholar 

  44. Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S, Gallagher D, Mayer L, Murphy E, Leibel RL (2005) Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest 115(12):3579–3586. doi:10.1172/JCI25977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosenbaum M, Nicolson M, Hirsch J, Murphy E, Chu F, Leibel RL (1997) Effects of weight change on plasma leptin concentrations and energy expenditure. J Clin Endocrinol Metab 82(11):3647–3654. doi:10.1210/jcem.82.11.4390

    CAS  PubMed  Google Scholar 

  46. Galgani J, Ravussin E (2008) Energy metabolism, fuel selection and body weight regulation. Int J Obes 32(Suppl 7):S109–S119. doi:10.1038/ijo.2008.246

    Article  CAS  Google Scholar 

  47. Trexler ET, Smith-Ryan AE, Norton LE (2014) Metabolic adaptation to weight loss: implications for the athlete. J Int Soc Sports Nutr 11(1):7. doi:10.1186/1550-2783-11-7

    Article  PubMed  PubMed Central  Google Scholar 

  48. Smith-Ryan AE, Trexler ET, Wingfield HL, Blue MN (2016) Effects of high-intensity interval training on cardiometabolic risk factors in overweight/obese women. J Sports Sci 34(21):2038–2046. doi:10.1080/02640414.2016.1149609

    Article  PubMed  PubMed Central  Google Scholar 

  49. Smith-Ryan AE (2015) Enjoyment of high-intensity interval training in an overweight/obese cohort: a short report. Clin Physiol Funct Imaging. doi:10.1111/cpf.12262

    PubMed Central  Google Scholar 

  50. Franco LP, Morais CC, Cominetti C (2016) Normal-weight obesity syndrome: diagnosis, prevalence, and clinical implications. Nutr Rev 74(9):558–570. doi:10.1093/nutrit/nuw019

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Smith-Ryan.

Ethics declarations

Funding

This study was funded by Scivation, Inc., Burlington, NC. The project described was also supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant KL2TR001109. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All procedures were performed in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirsch, K.R., Smith-Ryan, A.E., Blue, M.N.M. et al. Influence of segmental body composition and adiposity hormones on resting metabolic rate and substrate utilization in overweight and obese adults. J Endocrinol Invest 40, 635–643 (2017). https://doi.org/10.1007/s40618-017-0616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0616-z

Keywords

Navigation