Skip to main content

Advertisement

Log in

Circulating microRNAs and diabetes mellitus: a novel tool for disease prediction, diagnosis, and staging?

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Diabetes is a complex, multifactorial group of metabolic diseases characterized by chronic hyperglycaemia due to pancreatic beta-cell dysfunction and/or loss. It is characterized by an asymptomatic and highly variable prodromic phase, which renders diabetes mellitus difficult to be predicted with sufficient accuracy. Despite several efforts in the identification and standardization of newly trustable. Biomarkers able to predict and follow-up diabetes and to specifically subtype its different forms, few of them have proven of clinical utility. Recently, a new class of endogenous non-coding small RNAs, namely microRNAs, have been indicated as putative biomarkers, being released by cells and tissues and found in a cell-free circulating form in many biological fluids, including serum and/or plasma. MicroRNAs have been initially identified as promising biomarkers in cancer, and nowadays their application has been extended to other diseases, including diabetes. Although an increasing number of studies focused on the evaluation of circulating microRNAs in diabetes, few reproducibly identified microRNAs as biomarkers for disease prediction or follow-up. Technological problems as well as the need to obtain highly standardized operating procedures and methods are still an issue in such research field. In this review, we comprehensively resume the main and most recent findings on circulating microRNAs, and their possible use as biomarkers to predict and follow-up diabetes and its complications, as well as the methodological challenges to standardize accurate operating procedures for their analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Diabetes Association (2016) 2. Classification and Diagnosis of Diabetes. Diabetes Care 39(Suppl 1):S13–S22. doi:10.2337/dc16-S005

    Google Scholar 

  2. Achenbach P, Bonifacio E, Ziegler A-G (2005) Predicting type 1 diabetes. Curr Diab Rep 5:98–103

    Article  CAS  PubMed  Google Scholar 

  3. Lindström J, Tuomilehto J (2003) The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care 26:725–731

    Article  PubMed  Google Scholar 

  4. Ventriglia G, Nigi L, Sebastiani G, Dotta F (2015) MicroRNAs: Novel players in the dialogue between pancreatic islets and immune system in autoimmune diabetes. Biomed Res Int 2015:749734. doi:10.1155/2015/749734

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sebastiani G, Po A, Miele E et al (2015) MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 52:523–530. doi:10.1007/s00592-014-0675-y

    Article  CAS  PubMed  Google Scholar 

  6. Guay C, Regazzi R (2016) New emerging tasks for microRNAs in the control of β-cell activities. Biochim Biophys Acta. doi:10.1016/j.bbalip.2016.05.003

    PubMed  Google Scholar 

  7. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518. doi:10.1073/pnas.0804549105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006. doi:10.1038/cr.2008.282

    Article  CAS  PubMed  Google Scholar 

  9. Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9:513–521. doi:10.1038/nrendo.2013.86

    Article  CAS  PubMed  Google Scholar 

  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  11. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi:10.1016/0092-8674(93)90529-Y

    Article  CAS  PubMed  Google Scholar 

  12. Soifer HS, Rossi JJ, Saetrom P (2007) MicroRNAs in disease and potential therapeutic applications. Mol Ther 15:2070–2079. doi:10.1038/sj.mt.6300311

    Article  CAS  PubMed  Google Scholar 

  13. Sebastiani G, Mancarella F, Ventriglia G et al (2015) MicroRNA miR-124a, a negative regulator of insulin secretion, is hyperexpressed in human pancreatic islets of type 2 diabetic patients. RNA Dis. 2:e593. doi:10.14800/rd.593

    Google Scholar 

  14. Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060. doi:10.1038/sj.emboj.7600385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haurie V, Durrieu-Gaillard S, Dumay-Odelot H et al (2010) Two isoforms of human RNA polymerase III with specific functions in cell growth and transformation. Proc Natl Acad Sci USA 107:4176–4181. doi:10.1073/pnas.0914980107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101. doi:10.1038/nsmb1167

    Article  CAS  PubMed  Google Scholar 

  17. Finnegan EF, Pasquinelli AE (2013) MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol 48:51–68. doi:10.3109/10409238.2012.738643

    Article  CAS  PubMed  Google Scholar 

  18. Wilczynska A, Bushell M (2015) The complexity of miRNA-mediated repression. Cell Death Differ 22:22–33. doi:10.1038/cdd.2014.112

    Article  CAS  PubMed  Google Scholar 

  19. Fehlmann T, Ludwig N, Backes C et al (2016) Distribution of microRNA biomarker candidates in solid tissues and body fluids. RNA Biol 13:1084–1088. doi:10.1080/15476286.2016.1234658

    Article  PubMed  Google Scholar 

  20. Chim SSC, Shing TKF, Hung ECW et al (2008) Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54:482–490. doi:10.1373/clinchem.2007.097972

    Article  CAS  PubMed  Google Scholar 

  21. Lawrie CH, Gal S, Dunlop HM et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675. doi:10.1111/j.1365-2141.2008.07077.x

    Article  PubMed  Google Scholar 

  22. Kanemaru H, Fukushima S, Yamashita J et al (2011) The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. J Dermatol Sci 61:187–193. doi:10.1016/j.jdermsci.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Liang H, Zhang J et al (2012) Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 22:125–132. doi:10.1016/j.tcb.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  24. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M (2013) Analysis of microRNA and protein transfer by exosomes during an immune synapse. Methods Mol Biol 1024:41–51. doi:10.1007/978-1-62703-453-1_4

    Article  CAS  PubMed  Google Scholar 

  25. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C et al (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282. doi:10.1038/ncomms1285

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guay C, Menoud V, Rome S, Regazzi R (2015) Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Commun Signal 13:17. doi:10.1186/s12964-015-0097-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452. doi:10.1074/jbc.M110.107821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kosaka N, Iguchi H, Hagiwara K et al (2013) Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 288:10849–10859. doi:10.1074/jbc.M112.446831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980. doi:10.1038/ncomms3980

    Article  PubMed  PubMed Central  Google Scholar 

  30. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucl Acids Res 39:7223–7233. doi:10.1093/nar/gkr254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Melo SA, Sugimoto H, O’Connell JT et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721. doi:10.1016/j.ccell.2014.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McKenzie AJ, Hoshino D, Hong NH, et al. (2016) KRAS-MEK Signaling controls Ago2 sorting into exosomes. Cell Rep 15:978–987. doi:10.1016/j.celrep.2016.03.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008. doi:10.1073/pnas.1019055108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang K, Zhang S, Weber J et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucl Acids Res 38:7248–7259. doi:10.1093/nar/gkq601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Michell DL, Vickers KC (2016) Lipoprotein carriers of microRNAs. Biochim Biophys Acta 1861:2069–2074. doi:10.1016/j.bbalip.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  36. Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433. doi:10.1038/ncb2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grieco FA, Vendrame F, Spagnuolo I, Dotta F (2011) Innate immunity and the pathogenesis of type 1 diabetes. Semin Immunopathol 33:57–66. doi:10.1007/s00281-010-0206-z

    Article  CAS  PubMed  Google Scholar 

  38. Dotta F, Sebastiani G (2014) Enteroviral infections and development of type 1 diabetes: the Brothers Karamazov within the CVBs. Diabetes 63:384–386. doi:10.2337/db13-1441

    Article  CAS  PubMed  Google Scholar 

  39. Marchetti P, Dotta F, Ling Z et al (2000) Function of pancreatic islets isolated from a type 1 diabetic patient. Diabetes Care 23:701–703

    Article  CAS  PubMed  Google Scholar 

  40. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383:69–82. doi:10.1016/S0140-6736(13)60591-7

    Article  PubMed  Google Scholar 

  41. Christoffersson G, Rodriguez-Calvo T, von Herrath M (2016) Recent advances in understanding Type 1 Diabetes. [version 1; referees: 2 approved]. F1000Res. doi:10.12688/f1000research.7356.1

    PubMed  PubMed Central  Google Scholar 

  42. Michels A, Zhang L, Khadra A et al (2015) Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention. Pediatr Diabetes 16:465–484. doi:10.1111/pedi.12299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Battaglia M, Nigi L, Dotta F (2015) Towards an earlier and timely diagnosis of type 1 diabetes: is it time to change criteria to define disease onset? Curr Diab Rep 15:115. doi:10.1007/s11892-015-0690-6

    Article  PubMed  Google Scholar 

  44. Fousteri G, Ippolito E, Ahmed R, Hamad AR (2016) Beta-cell specific autoantibodies: Are they just an indicator of type 1 diabetes? Curr Diabetes Rev

  45. Giannopoulou EZ, Winkler C, Chmiel R et al (2015) Islet autoantibody phenotypes and incidence in children at increased risk for type 1 diabetes. Diabetologia 58:2317–2323. doi:10.1007/s00125-015-3672-y

    Article  CAS  PubMed  Google Scholar 

  46. Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309:2473–2479. doi:10.1001/jama.2013.6285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Achenbach P, Hummel M, Thümer L et al (2013) Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children. Diabetologia 56:1615–1622. doi:10.1007/s00125-013-2896-y

    Article  CAS  PubMed  Google Scholar 

  48. Sebastiani G, Grieco FA, Spagnuolo I et al (2011) Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev 27:862–866. doi:10.1002/dmrr.1262

    Article  CAS  PubMed  Google Scholar 

  49. Roggli E, Gattesco S, Caille D et al (2012) Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 61:1742–1751. doi:10.2337/db11-1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grieco FA, Sebastiani G, Juan-Mateu J et al (2016) MicroRNAs miR-23a-3p, miR-23b-3p and miR-149-5p regulate the expression of Pro-apoptotic BH3-only proteins DP5 and PUMA in human pancreatic beta cells. Diabetes. doi:10.2337/db16-0592

    PubMed  Google Scholar 

  51. Nielsen LB, Wang C, Sørensen K et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362. doi:10.1155/2012/896362

    PubMed  PubMed Central  Google Scholar 

  52. Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230. doi:10.1038/nature03076

    Article  CAS  PubMed  Google Scholar 

  53. Poy MN, Hausser J, Trajkovski M et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106:5813–5818. doi:10.1073/pnas.0810550106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marchand L, Jalabert A, Meugnier E et al (2016) miRNA-375 a sensor of glucotoxicity is altered in the serum of children with newly diagnosed Type 1 diabetes. J Diabetes Res 2016:1869082. doi:10.1155/2016/1869082

    Article  PubMed  PubMed Central  Google Scholar 

  55. Erener S, Mojibian M, Fox JK et al (2013) Circulating miR-375 as a biomarker of β-cell death and diabetes in mice. Endocrinology 154:603–608. doi:10.1210/en.2012-1744

    Article  CAS  PubMed  Google Scholar 

  56. Latreille M, Herrmanns K, Renwick N et al (2015) miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development. J Mol Med 93:1159–1169. doi:10.1007/s00109-015-1296-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Seyhan AA, Nunez Lopez YO, Xie H, et al. (2016) Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Sci Rep 6:31479. doi:10.1038/srep31479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Samandari N, Mirza AH, Nielsen LB et al (2016) Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia. doi:10.1007/s00125-016-4156-4

    PubMed  Google Scholar 

  59. Takahashi P, Xavier DJ, Evangelista AF et al (2014) MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene 539:213–223. doi:10.1016/j.gene.2014.01.075

    Article  CAS  PubMed  Google Scholar 

  60. Salas-Pérez F, Codner E, Valencia E et al (2013) MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 218:733–737. doi:10.1016/j.imbio.2012.08.276

    Article  PubMed  Google Scholar 

  61. Zampetaki A, Kiechl S, Drozdov I et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817. doi:10.1161/CIRCRESAHA.110.226357

    Article  CAS  PubMed  Google Scholar 

  62. Fish JE, Santoro MM, Morton SU et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284. doi:10.1016/j.devcel.2008.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang T, Lv C, Li L, et al. (2013) Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals. Biomed Res Int 2013:761617. doi:10.1155/2013/761617

    PubMed  PubMed Central  Google Scholar 

  64. Zhang T, Li L, Shang Q et al (2015) Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun 463:60–63. doi:10.1016/j.bbrc.2015.05.017

    Article  CAS  PubMed  Google Scholar 

  65. Ortega FJ, Mercader JM, Moreno-Navarrete JM et al (2014) Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37:1375–1383. doi:10.2337/dc13-1847

    Article  CAS  PubMed  Google Scholar 

  66. Rong Y, Bao W, Shan Z et al (2013) Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus. PLoS One 8:e73272. doi:10.1371/journal.pone.0073272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baldeón RL, Weigelt K, de Wit H et al (2014) Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients. PLoS One 9:e115209. doi:10.1371/journal.pone.0115209

    Article  Google Scholar 

  68. Wang C, Wan S, Yang T, et al. (2016) Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 6:20032. doi:10.1038/srep20032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kong L, Zhu J, Han W et al (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48:61–69. doi:10.1007/s00592-010-0226-0

    Article  CAS  PubMed  Google Scholar 

  70. Liu Y, Gao G, Yang C et al (2014) The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci 15:10567–10577. doi:10.3390/ijms150610567

    Article  PubMed  PubMed Central  Google Scholar 

  71. Karolina DS, Tavintharan S, Armugam A et al (2012) Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 97:E2271–E2276. doi:10.1210/jc.2012-1996

    Article  CAS  PubMed  Google Scholar 

  72. Balasubramanyam M, Aravind S, Gokulakrishnan K et al (2011) Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 351:197–205. doi:10.1007/s11010-011-0727-3

    Article  CAS  PubMed  Google Scholar 

  73. Al-Kafaji G, Al-Mahroos G, Abdulla Al-Muhtaresh H, et al. (2016) Circulating endothelium-enriched microRNA-126 as a potential biomarker for coronary artery disease in type 2 diabetes mellitus patients. Biomarkers 11:1–11. doi:10.1080/1354750X.2016.1204004

    Google Scholar 

  74. Al-Kafaji G, Al-Mahroos G, Al-Muhtaresh HA, et al. (2016) Decreased expression of circulating microRNA-126 in patients with type 2 diabetic nephropathy: a potential blood-based biomarker. Exp Ther Med 12:815–822. doi:10.3892/etm.2016.3395

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sebastiani G, Nigi L, Spagnuolo I, et al. (2013) MicroRNA profiling in sera of patients with type 2 diabetes mellitus reveals an upregulation of miR-31 expression in subjects with microvascular complications. JBiSE 06:58–64. doi:10.4236/jbise.2013.65A009

    Article  Google Scholar 

  76. Farr RJ, Januszewski AS, Joglekar MV, et al. (2015) A comparative analysis of high-throughput platforms for validation of a circulating microRNA signature in diabetic retinopathy. Sci Rep 5:10375. doi:10.1038/srep10375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Qing S, Yuan S, Yun C et al (2014) Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem 34:1733–1740. doi:10.1159/000366374

    Article  CAS  PubMed  Google Scholar 

  78. Zampetaki A, Willeit P, Burr S et al (2016) Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in Type 1 diabetes. Diabetes 65:216–227. doi:10.2337/db15-0389

    CAS  PubMed  Google Scholar 

  79. Barutta F, Bruno G, Matullo G et al (2016) MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB prospective complications study. Acta Diabetol. doi:10.1007/s00592-016-0915-4

    PubMed  Google Scholar 

  80. Pezzolesi MG, Satake E, McDonnell KP et al (2015) Circulating TGF-β1-regulated miRNAs and the risk of rapid progression to ESRD in Type 1 diabetes. Diabetes 64:3285–3293. doi:10.2337/db15-0116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Argyropoulos C, Wang K, Bernardo J et al (2015) Urinary MicroRNA profiling predicts the development of microalbuminuria in patients with Type 1 diabetes. J Clin Med 4:1498–1517. doi:10.3390/jcm4071498

    Article  PubMed  PubMed Central  Google Scholar 

  82. Argyropoulos C, Wang K, McClarty S et al (2013) Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS One 8:e54662. doi:10.1371/journal.pone.0054662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Barutta F, Tricarico M, Corbelli A et al (2013) Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One 8:e73798. doi:10.1371/journal.pone.0073798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Delić D, Eisele C, Schmid R et al (2016) Urinary exosomal miRNA signature in Type II diabetic nephropathy patients. PLoS One 11:e0150154. doi:10.1371/journal.pone.0150154

    Article  PubMed  PubMed Central  Google Scholar 

  85. Eissa S, Matboli M, Bekhet MM (2016) Clinical verification of a novel urinary microRNA panal: 133b, -342 and – 30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis. Biomed Pharmacother 83:92–99. doi:10.1016/j.biopha.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  86. Wang K, Yuan Y, Cho J-H et al (2012) Comparing the MicroRNA spectrum between serum and plasma. PLoS ONE 7:e41561. doi:10.1371/journal.pone.0041561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaudewitz D, Skroblin P, Bender LH et al (2016) Association of MicroRNAs and YRNAs With Platelet Function. Circ Res 118:420–432. doi:10.1161/CIRCRESAHA.114.305663

    Article  CAS  PubMed  Google Scholar 

  88. Willeit P, Zampetaki A, Dudek K et al (2013) Circulating microRNAs as novel biomarkers for platelet activation. Circ Res 112:595–600. doi:10.1161/CIRCRESAHA.111.300539

    Article  CAS  PubMed  Google Scholar 

  89. Blondal T, Jensby Nielsen S, Baker A et al (2013) Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59:S1–S6. doi:10.1016/j.ymeth.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  90. Monleau M, Bonnel S, Gostan T et al (2014) Comparison of different extraction techniques to profile microRNAs from human sera and peripheral blood mononuclear cells. BMC Genomics 15:395. doi:10.1186/1471-2164-15-395

    Article  PubMed  PubMed Central  Google Scholar 

  91. Köberle V, Pleli T, Schmithals C et al (2013) Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers. PLoS One 8:e75184. doi:10.1371/journal.pone.0075184

    Article  PubMed  PubMed Central  Google Scholar 

  92. Van Deun J, Mestdagh P, Sormunen R et al (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. doi:10.3402/jev.v3.24858

    PubMed  PubMed Central  Google Scholar 

  93. Ban E, Song EJ (2014) Capillary electrophoresis methods for microRNAs assays: a review. Anal Chim Acta 852:1–7. doi:10.1016/j.aca.2014.08.034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FD work is supported by grants from the European Union [Project PEVNET (Project Number: 261441) in the Framework Program 7 (FP7)], from the Italian Ministry of Research (No. 2010JS3PMZ_008 and No. 2015373Z39_007) and from Fondazione Roma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dotta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The review summarizes the previous studies and does not include human or animal participants.

Informed consent

No need for informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastiani, G., Nigi, L., Grieco, G.E. et al. Circulating microRNAs and diabetes mellitus: a novel tool for disease prediction, diagnosis, and staging?. J Endocrinol Invest 40, 591–610 (2017). https://doi.org/10.1007/s40618-017-0611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-017-0611-4

Keywords

Navigation