Skip to main content
Log in

Prolactin regulatory element-binding protein is involved in suppression of the adiponectin gene in vivo

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Prolactin regulatory element-binding protein (PREB), a member of the WD-repeat protein family, has been recognized as a transcriptional factor that regulates prolactin promoter activity in the anterior pituitary of rats. PREB is expressed not only in the pituitary but also in various other tissues, including the adipose tissue. Previous studies have shown that PREB acts as a transcriptional regulator and suppresses the expression of the adiponectin gene in cultured 3T3L1 preadipocytes. The aim of this study was to further examine the potential role of PREB in adipose tissue in vivo.

Methods

Transgenic mice that overexpressing PREB (PREB transgenic mice) were generated. Insulin resistance was evaluated in PREB transgenic mice using glucose and insulin tolerance tests. Adiponectin expression in the adipose tissue was examined by western blot analysis and quantitative polymerase chain reaction (qPCR). The expression levels of stearoyl-CoA desaturase (Scd) and adiponectin receptor 2(ADIPOR2) were quantified by qPCR.

Results

Glucose and insulin tolerance tests revealed insulin resistance in PREB transgenic mice. Serum adiponectin and leptin concentrations were decreased. Adiponectin gene expression was decreased in the adipose tissue, which was confirmed by the downregulation of the adiponectin-dependent hepatic Scd gene and upregulation of the ADIPOR2 gene in the liver of PREB transgenic mice. We also found that pioglitazone, an agonist for the peroxisome proliferator-activated receptor-r, improved the insulin resistance in the PREB transgenic mice after a 10-day feeding period.

Conclusions

These results demonstrated that PREB might contribute to the regulation of adiponectin gene expression in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fliss MS, Hinkle PM, Bancroft C (1999) Expression cloning and characterization of PREB (prolactin regulatory element binding), a novel WD motif DNA-binding protein with a capacity to regulate prolactin promoter activity. Mol Endocrinol 13(4):644–657. doi:10.1210/mend.13.4.0260

    Article  CAS  PubMed  Google Scholar 

  2. Taylor Clelland CL, Craciun L, Bancroft C, Lufkin T (2000) Mapping and developmental expression analysis of the WD-repeat gene Preb. Genomics 63(3):391–399. doi:10.1006/geno.1999.6089

    Article  CAS  PubMed  Google Scholar 

  3. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371(6495):297–300. doi:10.1038/371297a0

    Article  CAS  PubMed  Google Scholar 

  4. Taylor Clelland CL, Levy B, McKie JM, Duncan AM, Hirschhorn K, Bancroft C (2000) Cloning and characterization of human PREB; a gene that maps to a genomic region associated with trisomy 2p syndrome. Mamm Genome 11(8):675–681

    Article  CAS  PubMed  Google Scholar 

  5. Ohtsuka S, Murao K, Imachi H, Cao WM, Yu X, Li J, Iwama H, Wong NC, Bancroft C, Ishida T (2006) Prolactin regulatory element binding protein as a potential transcriptional factor for the insulin gene in response to glucose stimulation. Diabetologia 49(7):1599–1607. doi:10.1007/s00125-006-0255-y

    Article  CAS  PubMed  Google Scholar 

  6. Murao K, Imachi H, Yu X, Cao WM, Muraoka T, Dobashi H, Hosomi N, Haba R, Iwama H, Ishida T (2008) The transcriptional factor prolactin regulatory element-binding protein mediates the gene transcription of adrenal scavenger receptor class B type I via 3′,5′-cyclic adenosine 5′-monophosphate. Endocrinology 149(12):6103–6112. doi:10.1210/en.2008-0380

    Article  CAS  PubMed  Google Scholar 

  7. Imachi H, Murao K, Cao WM, Muraoka T, Nishiuchi T, Dobashi H, Hosomi N, Iwama H, Ishida T (2008) The prolactin regulatory element-binding regulates of the 11β-hydroxylase gene. Biochem Biophys Res Commun 376(3):531–535. doi:10.1016/j.bbrc.2008.09.027

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Murao K, Imachi H, Yu X, Muraoka T, Kim JB, Ishida T (2010) Prolactin regulatory element-binding protein involved in cAMP-mediated suppression of adiponectin gene. J Cell Mol Med 14(6A):1294–1302. doi:10.1111/j.1582-4934.2009.00752.x

    Article  CAS  PubMed  Google Scholar 

  9. Matsuzawa Y (2006) Therapy insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat Clin Pract Cardiovasc Med 3(1):35–42. doi:10.1038/ncpcardio0380

    Article  CAS  PubMed  Google Scholar 

  10. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7(8):941–946. doi:10.1038/90984

    Article  CAS  PubMed  Google Scholar 

  11. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7(8):947–953. doi:10.1038/90992

    Article  CAS  PubMed  Google Scholar 

  12. Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, Knowler WC, Krakoff J (2002) Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 360(9326):57–58. doi:10.1016/S0140-6736(02)09335-2

    Article  CAS  PubMed  Google Scholar 

  13. Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, Klein J, Paschke R (2003) Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 301(4):1045–1050

    Article  CAS  PubMed  Google Scholar 

  14. Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, Shimomura I (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52(7):1655–1663

    Article  CAS  PubMed  Google Scholar 

  15. Delporte ML, Funahashi T, Takahashi M, Matsuzawa Y, Brichard SM (2002) Pre- and post-translational negative effect of beta-adrenoceptor agonists on adiponectin secretion: in vitro and in vivo studies. Biochem J 367(Pt 3):677–685. doi:10.1042/BJ20020610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pajvani UB, Scherer PE (2003) Adiponectin: systemic contributor to insulin sensitivity. Curr Diab Rep 3(3):207–213

    Article  PubMed  Google Scholar 

  17. Liu Q, Yuan B, Lo KA, Patterson HC, Sun Y, Lodish HF (2012) Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism. Proc Natl Acad Sci USA 109(36):14568–14573. doi:10.1073/pnas.1211611109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kennelly PJ, Krebs EG (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 266(24):15555–15558

    CAS  PubMed  Google Scholar 

  19. Goldstein BJ, Scalia RG, Ma XL (2009) Protective vascular and myocardial effects of adiponectin. Nat Clin Pract Cardiovasc Med 6(1):27–35. doi:10.1038/ncpcardio1398

    Article  CAS  PubMed  Google Scholar 

  20. Niswender KD, Magnuson MA (2007) Obesity and the beta cell: lessons from leptin. J Clin Investig 117(10):2753–2756. doi:10.1172/JCI33528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chandran M, Phillips SA, Ciaraldi T, Henry RR (2003) Adiponectin: more than just another fat cell hormone? Diabetes Care 26(8):2442–2450

    Article  CAS  PubMed  Google Scholar 

  22. Daimon M, Oizumi T, Kato T (2012) Decreased serum levels of adiponectin as a risk for development of type 2 diabetes, and impaired glucose tolerance as a risk for stroke–the Funagata study. Nihon Rinsho Jpn J Clin Med 70(Suppl 3):256–259

    Google Scholar 

  23. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8(7):731–737. doi:10.1038/nm724

    Article  CAS  PubMed  Google Scholar 

  24. Ebihara K, Ogawa Y, Masuzaki H, Shintani M, Miyanaga F, Aizawa-Abe M, Hayashi T, Hosoda K, Inoue G, Yoshimasa Y, Gavrilova O, Reitman ML, Nakao K (2001) Transgenic overexpression of leptin rescues insulin resistance and diabetes in a mouse model of lipoatrophic diabetes. Diabetes 50(6):1440–1448

    Article  CAS  PubMed  Google Scholar 

  25. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86(5):1930–1935. doi:10.1210/jcem.86.5.7463

    Article  CAS  PubMed  Google Scholar 

  26. Zheng F, Zhang S, Lu W, Wu F, Yin X, Yu D, Pan Q, Li H (2014) Regulation of insulin resistance and adiponectin signaling in adipose tissue by liver X receptor activation highlights a cross-talk with PPARgamma. PLoS ONE 9(6):e101269. doi:10.1371/journal.pone.0101269

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM (2001) Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 86(8):3815–3819. doi:10.1210/jcem.86.8.7741

    Article  CAS  PubMed  Google Scholar 

  28. Aso Y, Hara K, Ozeki N, Yatsuka C, Nakano T, Matsumoto S, Suetsugu M, Nakamachi T, Takebayashi K, Haruki K, Inukai T (2009) Low-dose pioglitazone increases serum high molecular weight adiponectin and improves glycemic control in Japanese patients with poorly controlled type 2 diabetes. Diabetes Res Clin Pract 85(2):147–152. doi:10.1016/j.diabres.2009.05.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Miss. Azusa Sugimoto and Dr. Yu Guan for their technical assistance. This work was supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan. (to H.I, K.M. 24591352, 15K09415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Procedures for the maintenance and use of animals were approved by the Ethics Review Board of Kagawa University, Kagawa, Japan, and all applicable institutional and governmental guidelines concerning the ethical use of animals were followed.

Informed consent

No informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.Z., Imachi, H., Lyu, J.Y. et al. Prolactin regulatory element-binding protein is involved in suppression of the adiponectin gene in vivo. J Endocrinol Invest 40, 437–445 (2017). https://doi.org/10.1007/s40618-016-0589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-016-0589-3

Keywords

Navigation