Skip to main content

Advertisement

Log in

The correct renal function evaluation in patients with thyroid dysfunction

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Thyroid dysfunction induces several renal derangements involving all nephron portions. Furthermore, dysthyroidism is a recognized risk factor associated with the development of chronic kidney disease. Current data, in fact, demonstrate that either subclinical or overt thyroid disease is associated with significant changes in creatinine, estimated glomerular filtration rate, measured glomerular filtration rate and Cystatin C. Herein, we systematically reviewed several relevant studies aiming at the identification of the most sensitive and specific parameter for the correct renal function evaluation in patients with thyroid dysfunction, that are usually treated as outpatients. Our systematic review indicates that estimated glomerular filtration rate, preferably with CKD-EPI equation, appears to be the most reliable and wieldy renal function parameter. Instead, Cystatin C should be better used in the grading of thyroid dysfunction severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CKD:

Chronic kidney disease

PAH:

Para-aminoippurate acid

GFR:

Glomerular filtration rate

RAAS:

Renin-angiotensin-aldosterone system

TSH:

Thyroid stimulating hormone

ADO:

Adenosine

Pi:

Phosphate

TBG:

Thyroxine binding globulin

SIADH:

Anti-diuretic hormone secretion syndrome

eGFR:

Estimated glomerular filtration rate

mGFR:

Measured glomerular filtration rate

Cys C:

Cystatin C

References

  1. Mohamedali M, Maddika SR, Vyas A, Iyer V, Cheriyath P (2014) Thyroid disorders and chronic kidney disease. Int J Nephrol 2014:1–6

    Article  Google Scholar 

  2. Mariani LH, Berns JS (2012) The renal manifestations of thyroid disease. J Am Soc Nephrol 23:22–26

    Article  CAS  PubMed  Google Scholar 

  3. Zoccali C, Mallamaci F (2012) Thyroid function and clinical outcomes in kidney failure. Clin J Am Soc Nephrol 7:12–14

    Article  CAS  PubMed  Google Scholar 

  4. Chen K, Carey LC, Valego NK, Rose JC (2007) Thyroid hormone replacement normalizes renal renin and angiotensin receptor expression in thyroidectomized fetal sheep. Am J Physiol 293(2):701–706

    Google Scholar 

  5. Basu G, Mohapatra A (2012) Interactions between thyroid disorders and kidney disease. Indian J Endocrinol Metab 16(2):204–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katz AI, Emmanouel DS, Lindheimer MD (1975) Thyroid hormone and the kidney. Nephron 15(3–5):223–249

    Article  CAS  PubMed  Google Scholar 

  7. Gheissari A, Hashemipour M, Khosravi P, Adibi A (2012) Different aspects of kidney function in well-controlled congenital hypothyroidism. J Clin Res Pediatr Endocrinol 4(4):193–198

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bräunlich H (1984) Postnatal development of kidney function in rats receiving thyroid hormones. Exp Clin Endocrinol 83(3):243–250

    Article  PubMed  Google Scholar 

  9. Capasso G, De Tommaso G, Pica A et al (1999) Effects of thyroid hormones on hearth and kidney function. Min Electrolyte Metab 25(1–2):56–64

    Article  CAS  Google Scholar 

  10. Rodrìguez-Gòmez I, Banegas I, Wangensteen R et al (2013) Influence of thyroid state on cardiac and renal capillary density and glomerular morphology in rats. J Endocrinol 216(1):43–51

    Article  PubMed  Google Scholar 

  11. Gagliardini E, Conti S, Benigni A, Remuzzi G, Remuzzi A (2010) Imaging of the porous ultrastructure of the glomerular epithelial filtration. J Am Soc Nephrol 21(12):2081–2089

    Article  PubMed  PubMed Central  Google Scholar 

  12. Iglesias P, Dìez JJ (2009) Thyroid dysfunction and kidney disease. Eur J Endocrinol 160:503–515

    Article  CAS  PubMed  Google Scholar 

  13. Rhee CM, Brent GA, Kovesdy CP et al (2015) Thyroid functional disease: an under-recognized cardiovascular risk factor in kidney disease patients. Nephrol Dial Transpl 30(5):724–737

    Article  Google Scholar 

  14. Vargas F, Rodrìguez-Gòmez I, Vargas-Tendero P, Jimenez E, Montiel M (2012) The renin-angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations. J Endocrinol 213:25–36

    Article  CAS  PubMed  Google Scholar 

  15. Simeoni M, Nicotera R, Colao M et al (2015) Direct inhibition of plasmatic renin activity with aliskiren: a promising but under-investigated therapeutic option for non-diabetic glomerulonephritis. Int Urol Nephrol, 1–9. doi:10.1007/s11255-015-1128-4

  16. Simeoni M, Cianfrone P, Comi N et al. (2015) Is it feasible to improve the duration and the efficiency of Ramipril anti-proteinuric response? G Ital Nefro 32(1)

  17. Franco M, Chàvez E, Pèrez-Mèndez O (2011) Pleiotropic effects of thyroid hormones: learning from hypothyroidism. J Thyroid Res 2011:1–17. doi:10.4061/2011/321030

    Article  Google Scholar 

  18. De Santo NG, Capasso G, Calella C, Paduano C, Giordano C (1980) Tubular transport processes in proximal tubules of hypothyroid rats. Eur J Physiol 384:317–322

    Article  Google Scholar 

  19. Gick GG, Ismail-Beigì F, Edelman IS (1988) Thyroidal regulation of rat renal and hepatic Na/K-ATPase gene expression. J Biol Chem 263(32):16610–16618

    CAS  PubMed  Google Scholar 

  20. McCaffrey C, Quamme GA (1984) Effects of thyroid status on renal calcium and magnesium handling. Can J Comp Med 48:51–57

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Alcade AI, Sarasa M, Raldùa D et al (1999) Role of thyroid hormone in regulation of renal phosphate transport I young and aged rats. Endocrinology 140(4):1544–1551

    Google Scholar 

  22. Dinesh Kumar Dhanwal (2011) Thyroid disorders and bone mineral metabolism. Indian J Endocrinol Metab 15(Suppl2):S107–S112

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cantone A, Wang T, Pica A, Simeoni M, Capasso G (2006) Use of transgenic mice in acid-base balance studies. J Nephrol 19(Suppl 9):S121–S127

    CAS  PubMed  Google Scholar 

  24. Parmar MS (2004) Kidney stones. BMJ 328(7453):1420–1424

    Article  PubMed  PubMed Central  Google Scholar 

  25. Szeto CC, Chow CC, Li KI, Ko TC, Yeung VTF, Cockram CS (1996) Thyrotoxicosis and renal tubular-acidosis presenting as hypokalemic paralysis. Brit J Rheumatol 35(3):289–291

    Article  CAS  Google Scholar 

  26. Ulrich FM, Chavez R, Cookson FL, Vaamonde CA (1976) Impaired urinary acidification in hypothyroid rats. Eur J Phys 361:215–220

    Article  Google Scholar 

  27. Mohebbi N, Kovacikova J, Nowik M, Wagner CA (2007) Thyroid hormone deficiency alters expression of acid-base transporters in rat kidney. Am J Physiol Ren Physiol 293(1):416–427

    Article  Google Scholar 

  28. Kolman P, Pica A, Carvou N et al (2009) Insulin uptake across the luminal membrane of the rat proximal tubule in vivo and in vitro. Am J Physiol Ren Physiol 296(5):F1227–F1237

    Article  CAS  Google Scholar 

  29. Akikusa B, Kondo Y, Iemoto Y (1984) Hashimoto’s thyroiditis and membranous nephropathy developed in progressive systemic sclerosis (PSS). Am J Clin Pathol 81(2):260–263

    Article  CAS  PubMed  Google Scholar 

  30. Lucisano G, Simeoni M, Comi N, Citraro ML, Fuiano L, Fuiano G (2015) Continuous intravenous infusion of Furosemide is more effective and safer than coadministration of albumin and furosemide in patients with nephrotic syndrome. Minerva Urol Nephrol 67(2):169–171

    CAS  Google Scholar 

  31. Afrasiabi MA, Vaziri ND, Gwinup G, Mays DM, Barton CH (1979) Thyroid function studies in the nephrotic syndrome. Ann Intern Med 90(3):335–338

    Article  CAS  PubMed  Google Scholar 

  32. Schmitz PH, De Meijer PH, Meinders AE (2001) Hyponatremia due to hypothyroidism: a pure renal mechanism. Neth J Med 58(3):143–149

    Article  CAS  PubMed  Google Scholar 

  33. Grimaldi R, Capuano P, Miranda N, Wagner C, Capasso G (2007) Pendrin: physiology, molecular biology and clinical importance. G Ital Nefrol 24(4):288–294

    CAS  PubMed  Google Scholar 

  34. Chang JH, Kim S (2009) Role of pendrin in acid-base balance. Electrolyte Blood Press 7(1):20–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shemesh O, Golbetz H, Kriss JP, Myers BD (1985) Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28:830–838

    Article  CAS  PubMed  Google Scholar 

  36. Arora S, Chawla R, Tayal D, Gupta VK (2009) Sohi SJ Biochemical markers of liver and kidney function are influenced by thyroid function. A case controlled follow up study in Indian hypothyroid subjects. Indian J Clin Biochem 24(4):370–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stevens Lesley A, Levey Andrew S (2009) Measured GFR as a Confirmatory Test for Estimated GFR. JASN 20(2):305–313

    Google Scholar 

  38. Stevens LA (2010) Comparative Performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study Equations for Estimating GFR Levels above 60 mL/min/1.73 m2. AJKD 56(3):486–95

  39. Shukralla Khalid A, Ahmed MI, Elfaki HM (2006) Renal function in hypothyroidism. conference paper of the eight arab conference on the peaceful uses of atomic energy. Amman 373–77

  40. Sun MT, Hsiao FC, Su SC (2012) Thyrotropin as an independent factor of renal function and chronic kidney disease in normoglycemic euthyroid adults. Endocr Res 37(3):110–116

    Article  PubMed  Google Scholar 

  41. Asvold BO, Bjoro T, Vatten L (2011) Association of thyroid function with estimated glomerular filtration rate in a population-based study: the HUNT study. Eur J Endocrinol 164:101–105

    Article  PubMed  Google Scholar 

  42. Song SH, Kwak IS, Lee DW, Kang YH, Seong EY (2009) The prevalence of low triiodothyronine according to the stage of chronic kidney disease in subject with a normal thyroid-stimulating hormone. Nephrol Dial Transpl 24:1534–1538

    Article  CAS  Google Scholar 

  43. Dong HS, Lee MJ, Lee HS, Oh HJ, Ko K II (2013) Thyroid hormone replacement therapy attenuates the decline of renal function in chronic kidney disease patients with subclinical hypothyroidism. Thyroid 23(6):654–661

    Article  Google Scholar 

  44. Stevens Lesley A, Levey Andrew S (2009) Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol 20:2305–2313

    Article  PubMed  Google Scholar 

  45. Suher M, Cad M (2005) Relation of thyroid dysfunction, thyroid autoantibodies and renal function. Renal Fail 27(6):739–742

    Article  CAS  Google Scholar 

  46. Tsuda A, Inaba M, Ichii M, Akinobu O, Yoshiteru O (2013) Relationship between serum TSH levels and intrarenal hemodynamic parameters in euthyroid subjects. Eur J Endocrinol 169:45–50

    Article  CAS  PubMed  Google Scholar 

  47. Laterza OF, Price CP, Scott MG (2002) Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem 48(5):699–707

    CAS  PubMed  Google Scholar 

  48. Roelofs W, Sprong T, De Kok JB (2003) Is cystatin C a marker of glomerular filtration rate in thyroid dysfunction? Clin Chem 49(9):1558–1559

    Article  Google Scholar 

  49. Fricker M, Wiesli P, Brandle M, Schwegler B, Schmid C (2003) Impact of thyroid dysfunction on serum cystatin C. Kidney Int 63:1944–1947

    Article  CAS  PubMed  Google Scholar 

  50. Jaygopal V, Keevil BG, Atkin SL (2003) Paradoxical changes in cystatin C and serum creatinine in patients with hypo- and Hyperthyroidism. Clin Chem 49(4):680–681

    Article  Google Scholar 

  51. Manetti L, Pardini E, Genovesi M, Campomori A, Grasso L (2005) Thyroid function differently affects serum cystatin C and creatinine concentrations. J Endocrinol Invest 28(4):346–349

    Article  CAS  PubMed  Google Scholar 

  52. Stojanoski S, Gjorceva DP, Gruev T, Ristevska-Miceva S, Ristevska N (2011) Impact of thyroid dysfunction on serum cystatin C, serum creatinine and glomerular filtration rate. Maced J Med Sci 4(1):25–30

    Google Scholar 

  53. Wiesli P, Schwegler B, Spinas GA, Schmid C (2003) Serum cystatin C is sensitive to small changes in thyroid function. Clin Chim Acta 338:87–90

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariadelina Simeoni.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare. This paper was not funded.

Ethical approval

In this systematic literature review all studies included in the analysis were conducted in accomplishment to the current legislation.

Informed consent

Informed consent was also obtained from all patients recruited in the reviewed studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simeoni, M., Cerantonio, A., Pastore, I. et al. The correct renal function evaluation in patients with thyroid dysfunction. J Endocrinol Invest 39, 495–507 (2016). https://doi.org/10.1007/s40618-015-0402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0402-8

Keywords

Navigation