Skip to main content
Log in

The effect of sphingosine-1-phosphate on bone metabolism in humans depends on its plasma/bone marrow gradient

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Although recent studies provide clinical evidence that sphingosine-1-phosphate (S1P) may primarily affect bone resorption in humans, rather than bone formation or the osteoclast–osteoblast coupling phenomenon, those studies could not determine which bone resorption mechanism is more important, i.e., chemorepulsion of osteoclast precursors via the blood to bone marrow S1P gradient or receptor activator of NF-κB ligand (RANKL) elevation in osteoblasts via local S1P.

Aim

To investigate how S1P mainly contributes to increased bone resorption in humans, we performed this case–control study at a clinical unit in Korea.

Methods

Blood and bone marrow samples were contemporaneously collected from 70 patients who underwent hip surgery due to either osteoporotic hip fracture (HF) (n = 10) or other causes such as osteoarthritis (n = 60).

Results

After adjusting for sex, age, BMI, smoking, alcohol, previous fracture, diabetes, and stroke, subjects with osteoporotic HF demonstrated a 3.2-fold higher plasma/bone marrow S1P ratio than those without HF, whereas plasma and bone marrow S1P levels were not significantly different between these groups. Consistently, the risk of osteoporotic HF increased 1.38-fold per increment in the plasma/bone marrow S1P ratio in a multivariate adjustment model. However, the odds ratios for prevalent HF according to the increment in the plasma and bone marrow S1P level were not statistically significant.

Conclusion

Our current results using simultaneously collected blood and bone marrow samples suggest that the detrimental effects of S1P on bone metabolism in humans may depend on the S1P gradient between the peripheral blood and bone marrow cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5(7):560–570. doi:10.1038/nri1650

    Article  CAS  PubMed  Google Scholar 

  2. Okajima F, Sato K, Kimura T (2009) Anti-atherogenic actions of high-density lipoprotein through sphingosine 1-phosphate receptors and scavenger receptor class B type I. Endocr J 56(3):317–334

    Article  CAS  PubMed  Google Scholar 

  3. Grey A, Xu X, Hill B, Watson M, Callon K, Reid IR, Cornish J (2004) Osteoblastic cells express phospholipid receptors and phosphatases and proliferate in response to sphingosine-1-phosphate. Calcif Tissue Int 74(6):542–550. doi:10.1007/s00223-003-0155-9

    Article  CAS  PubMed  Google Scholar 

  4. Grey A, Chen Q, Callon K, Xu X, Reid IR, Cornish J (2002) The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase. Endocrinology 143(12):4755–4763. doi:10.1210/en.2002-220347

    Article  CAS  PubMed  Google Scholar 

  5. Roelofsen T, Akkers R, Beumer W, Apotheker M, Steeghs I, van de Ven J, Gelderblom C, Garritsen A, Dechering K (2008) Sphingosine-1-phosphate acts as a developmental stage specific inhibitor of platelet-derived growth factor-induced chemotaxis of osteoblasts. J Cell Biochem 105(4):1128–1138. doi:10.1002/jcb.21915

    Article  CAS  PubMed  Google Scholar 

  6. Ryu J, Kim HJ, Chang EJ, Huang H, Banno Y, Kim HH (2006) Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J 25(24):5840–5851. doi:10.1038/sj.emboj.7601430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ishii M, Kikuta J, Shimazu Y, Meier-Schellersheim M, Germain RN (2010) Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med 207(13):2793–2798. doi:10.1084/jem.20101474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kim BJ, Koh JM, Lee SY, Lee YS, Lee SH, Lim KH, Cho EH, Kim SW, Kim TH, Kim SY, Kim GS (2012) Plasma sphingosine 1-phosphate levels and the risk of vertebral fracture in postmenopausal women. J Clin Endocrinol Metab 97(10):3807–3814. doi:10.1210/jc.2012-2346

    Article  CAS  PubMed  Google Scholar 

  9. Lee SH, Lee SY, Lee YS, Kim BJ, Lim KH, Cho EH, Kim SW, Koh JM, Kim GS (2012) Higher circulating sphingosine 1-phosphate levels are associated with lower bone mineral density and higher bone resorption marker in humans. J Clin Endocrinol Metab 97(8):E1421–E1428. doi:10.1210/jc.2012-1044

    Article  CAS  PubMed  Google Scholar 

  10. Liu H, Chakravarty D, Maceyka M, Milstien S, Spiegel S (2002) Sphingosine kinases: a novel family of lipid kinases. Prog Nucleic Acid Res Mol Biol 71:493–511

    Article  CAS  PubMed  Google Scholar 

  11. Kohama T, Olivera A, Edsall L, Nagiec MM, Dickson R, Spiegel S (1998) Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 273(37):23722–23728

    Article  CAS  PubMed  Google Scholar 

  12. Maeda Y, Seki N, Sato N, Sugahara K, Chiba K (2010) Sphingosine 1-phosphate receptor type 1 regulates egress of mature T cells from mouse bone marrow. Int Immunol 22(6):515–525. doi:10.1093/intimm/dxq036

    Article  CAS  PubMed  Google Scholar 

  13. Peest U, Sensken S-C, Andréani P, Hänel P, Van Veldhoven PP, Gräler MH (2008) S1P-lyase independent clearance of extracellular sphingosine 1-phosphate after dephosphorylation and cellular uptake. J Cell Biochem 104(3):756–772. doi:10.1002/jcb.21665

    Article  CAS  PubMed  Google Scholar 

  14. Zhao Y, Kalari SK, Usatyuk PV, Gorshkova I, He D, Watkins T, Brindley DN, Sun C, Bittman R, Garcia JG, Berdyshev EV, Natarajan V (2007) Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1. J Biol Chem 282(19):14165–14177. doi:10.1074/jbc.M701279200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y, Vacher J, Proia RL, Germain RN (2009) Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458(7237):524–528. doi:10.1038/nature07713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ishii M (1831) Kikuta J (2013) Sphingosine-1-phosphate signaling controlling osteoclasts and bone homeostasis. Biochim Biophys Acta 1:223–227. doi:10.1016/j.bbalip.2012.06.002

    Google Scholar 

  17. Dziak R (2013) The role of sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) in regulation of osteoclastic and osteoblastic cells. Immunol Invest 42(7):510–518. doi:10.3109/08820139.2013.823804

    Article  CAS  PubMed  Google Scholar 

  18. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342. doi:10.1038/nature01658

    Article  CAS  PubMed  Google Scholar 

  19. Ahn SH, Koh JM, Gong EJ, Byun S, Lee SY, Kim BJ, Lee SH, Chang JS, Kim GS (2013) Association of bone marrow sphingosine 1-phosphate levels with osteoporotic hip fractures. J Bone Metab 20(2):61–65. doi:10.11005/jbm.2013.20.2.61

    Article  PubMed Central  PubMed  Google Scholar 

  20. Prevention NIHCDPoO, Diagnosis, and T (2001) OSteoporosis prevention, diagnosis, and therapy. JAMA 285(6):785–795

    Article  Google Scholar 

  21. Siris ES, Miller PD, Barrett-Connor E et al (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the national osteoporosis risk assessment. JAMA 286(22):2815–2822. doi:10.1001/jama.286.22.2815

    Article  CAS  PubMed  Google Scholar 

  22. Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, Hochberg MC, Vogt MT, Orwoll ES (2005) Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 90(5):2787–2793. doi:10.1210/jc.2004-1568

    Article  CAS  PubMed  Google Scholar 

  23. Sanders KM, Nicholson GC, Watts JJ, Pasco JA, Henry MJ, Kotowicz MA, Seeman E (2006) Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone 38(5):694–700. doi:10.1016/j.bone.2005.06.004

    Article  PubMed  Google Scholar 

  24. Kanis JA, Black D, Cooper C, Dargent P, Dawson-Hughes B, De Laet C, Delmas P, Eisman J, Johnell O, Jonsson B, Melton L, Oden A, Papapoulos S, Pols H, Rizzoli R, Silman A, Tenenhouse A (2002) A new approach to the development of assessment guidelines for osteoporosis. Osteoporos Int 13(7):527–536. doi:10.1007/s001980200069

    Article  CAS  PubMed  Google Scholar 

  25. WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organization technical report series pp 43:1–129

  26. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Investig 72(4):1396–1409. doi:10.1172/jci111096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359(9320):1841–1850. doi:10.1016/s0140-6736(02)08706-8

    Article  PubMed  Google Scholar 

  28. Borah B, Dufresne TE, Chmielewski PA, Johnson TD, Chines A, Manhart MD (2004) Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone 34(4):736–746. doi:10.1016/j.bone.2003.12.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Korea Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (Project Nos. HI13C1432 and HI14C2185) and the National Research Foundation (NRF) that is funded by the Korean government (Project No. KRF-2010-0025271).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J.-M. Koh or Y.-M. Lee.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study was approved by the Institutional Review Board of Asan Medical Center and was conducted according to the Ethical Principles for Medical Research Involving Human Subjects, as defined by the Declaration of Helsinki.

Informed consent

All enrolled participants provided written informed consent.

Additional information

B.-J. Kim and K.-O. Shin contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BJ., Shin, KO., Kim, H. et al. The effect of sphingosine-1-phosphate on bone metabolism in humans depends on its plasma/bone marrow gradient. J Endocrinol Invest 39, 297–303 (2016). https://doi.org/10.1007/s40618-015-0364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0364-x

Keywords

Navigation