Skip to main content

Advertisement

Log in

Genetics of Cushing’s disease: an update

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Introduction

Cushing’s disease (CD) results from uncontrolled hypercortisolism induced by ACTH-secreting corticotroph adenomas; accordingly, patients diagnosed with CD usually present several comorbidities and an increased risk of mortality. Hypothesis-driven screenings have led to identification of rare alterations in a low number of patients, although the genetic basis underlying CD has remained unclear until recently. Using whole-exome sequencing, recurrent mutations have been reported in the gene coding for the ubiquitin-specific protease 8 (USP8), a protein with deubiquitinase (DUB) activity that modulates the lysosomal turnover of the EGF receptor (EGFR) and other membrane proteins.

Methods

In this review, we summarize the recent genetic findings and discuss the clinical and pathological implications of USP8 deregulation in corticotroph adenomas.

Conclusions

Mutations in USP8 have been identified in 35–62 % of functional sporadic corticotroph adenomas causing Cushing’s disease, but not in any other type of pituitary tumor. These mutations are found mostly in adult female patients and lead to an aberrant DUB activation by impairing the regulation of USP8 by members of the 14-3-3 family of proteins. The consequence of this hyperactivation is a longer retention of EGFR at the plasma membrane which promotes an enhanced production of ACTH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CD:

Cushing’s disease

ACTH:

Adrenocorticotropic hormone

POMC:

Pro-opiomelacortin

USP8:

Ubiquitin-specific protease 8

DUB:

Deubiquitinase

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

References

  1. Lacroix A, Feelders RA, Stratakis CA, Nieman LK (2015) Cushing’s syndrome. Lancet 6736:1–15

    Google Scholar 

  2. Sharma ST, Nieman LK, Feelders RA (2015) Comorbidities in Cushing’s disease. Pituitary 18:188–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ezzat S, Asa SL, Couldwell WT et al (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–619

    Article  PubMed  Google Scholar 

  4. Libuit LG, Karageorgiadis AS, Sinaii N et al (2015) A gender-dependent analysis of Cushing’s disease in childhood: pre-and postoperative follow-up. Clin Endocrinol 83:72–77

    Article  Google Scholar 

  5. Storr HL, Isidori AM, Monson JP et al (2004) Prepubertal Cushing’s disease is more common in males, but there is no increase in severity at diagnosis. J Clin Endocrinol Metab 89:3818–3820

    Article  PubMed  CAS  Google Scholar 

  6. Storr HL, Alexandraki KI, Martin L et al (2011) Comparisons in the epidemiology, diagnostic features and cure rate by transsphenoidal surgery between paediatric and adult-onset Cushing’s disease. Eur J Endocrinol 164:667–674

    Article  PubMed  CAS  Google Scholar 

  7. Lonser RR, Wind JJ, Nieman LK et al (2013) Outcome of surgical treatment of 200 children with Cushing’s disease. J Clin Endocrinol Metab 98:892–901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gicquel C, Le Bouc Y, Luton JP et al (1992) Monoclonality of corticotroph macroadenomas in Cushing’s disease. J Clin Endocrinol Metab 75:472–475

    PubMed  CAS  Google Scholar 

  9. Biller BM, Alexander JM, Zervas NT et al (1992) Clonal origins of adrenocorticotropin-secreting pituitary tissue in Cushing’s disease. J Clin Endocrinol Metab 75:1303–1309

    PubMed  CAS  Google Scholar 

  10. Schulte HM, Oldfield EH, Allolio B et al (1991) Clonal composition of pituitary adenomas in patients with Cushing’s disease: determination by X-chromosome inactivation analysis. J Clin Endocrinol Metab 73:1302–1308

    Article  PubMed  CAS  Google Scholar 

  11. Stratakis CA, Tichomirowa MA, Boikos S et al (2010) The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet 78:457–463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Georgitsi M, Raitila A, Karhu A et al (2007) Brief report: germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 92:3321–3325

    Article  PubMed  CAS  Google Scholar 

  13. Korbonits M, Storr HL, Kumar AV (2012) Familial pituitary adenomas—who should be tested for AIP mutations? Clin Endocrinol (Oxf) 77:351–356

    Article  CAS  Google Scholar 

  14. Cazabat L, Bouligand J, Salenave S et al (2012) Germline AIP mutations in apparently sporadic pituitary adenomas: prevalence in a prospective single-center cohort of 443 patients. J Clin Endocrinol Metab 97:663–670

    Article  CAS  Google Scholar 

  15. Preda V, Korbonits M, Cudlip S et al (2014) Low rate of germline AIP mutations in patients with apparently sporadic pituitary adenomas before the age of 40: a single-centre adult cohort. Eur J Endocrinol 171:659–666

    Article  PubMed  CAS  Google Scholar 

  16. Williamson EA, Ince PG, Harrison D et al (1995) G-protein mutations in human pituitary adrenocorticotrophic hormone-secreting adenomas. Eur J Clin Invest 25:128–131

    Article  PubMed  CAS  Google Scholar 

  17. Xekouki P, Stratakis CA (2012) Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr Relat Cancer 19:33–40

    Article  CAS  Google Scholar 

  18. De Menis E, Roncaroli F, Calvari V et al (2005) Corticotroph adenoma of the pituitary in a patient with X-linked adrenal hypoplasia congenita due to a novel mutation of the DAX-1 gene. Eur J Endocrinol 153:211–215

    Article  PubMed  CAS  Google Scholar 

  19. De Kock L, Sabbaghian N, Plourde F et al (2014) Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol 128:111–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pinto EM, Siqueira SA, Cukier P et al (2011) Possible role of a radiation-induced p53 mutation in a Nelson’s syndrome patient with a fatal outcome. Pituitary 14:400–404

    Article  PubMed  Google Scholar 

  21. Karl M, Lamberts SW, Koper JW et al (1996) Cushing’s disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel, dominant-negative glucocorticoid receptor mutation. Proc Assoc Am Physicians 108:296–307

    PubMed  CAS  Google Scholar 

  22. Beuschlein F, Boulkroun S, Osswald A et al (2013) Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 45:440–444

    Article  PubMed  CAS  Google Scholar 

  23. Beuschlein F, Fassnacht M, Assié G et al (2014) Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N Engl J Med 370:1019–1028

    Article  PubMed  CAS  Google Scholar 

  24. Reincke M, Sbiera S, Hayakawa A et al (2014) Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet 47:31–38

    Article  PubMed  CAS  Google Scholar 

  25. Pérez-Rivas LG, Theodoropoulou M, Ferraù F et al (2015) The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease. J Clin Endocrinol Metab 100:E997–E1004

    Article  PubMed  Google Scholar 

  26. Ma ZY, Song ZJ, Chen JH et al (2015) Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res 25:306–317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mizuno E, Kitamura N, Komada M (2007) 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase. Exp Cell Res 313:3624–3634

    Article  PubMed  CAS  Google Scholar 

  28. Naviglio S (1998) UBPY: a growth-regulated human ubiquitin isopeptidase. EMBO J 17:3241–3250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Niendorf S, Oksche A, Kisser A et al (2007) Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol Cell Biol 27:5029–5039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cao Z, Wu X, Yen L et al (2007) Neuregulin-induced ErbB3 downregulation is mediated by a protein stability cascade involving the E3 ubiquitin ligase Nrdp1. Mol Cell Biol 27:2180–2188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Byun S, Lee SYY, Lee J et al (2013) USP8 is a novel target for overcoming gefitinib resistance in lung cancer. Clin Cancer Res 19:3894–3904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Meijer IMJ, van Leeuwen JEM (2011) ERBB2 is a target for USP8-mediated deubiquitination. Cell Signal 23:458–467

    Article  PubMed  CAS  Google Scholar 

  33. Goh LK, Sorkin A (2013) Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol 5:a017459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12:104–117

    Article  PubMed  CAS  Google Scholar 

  35. Mizuno E, Iura T, Mukai A et al (2005) Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol Biol Cell 16:5163–5174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kontogeorgos G, Stefaneanu L, Kovacs K, Cheng Z (1996) Localization of epidermal growth factor (EGF) and epidermal growth factor receptor (EGFr) in human pituitary adenomas and nontumorous pituitaries: an immunocytochemical study. Endocr Pathol 7:63–70

    Article  PubMed  CAS  Google Scholar 

  37. Theodoropoulou M, Arzberger T, Gruebler Y et al (2004) Expression of epidermal growth factor receptor in neoplastic pituitary cells: evidence for a role in corticotropinoma cells. J Endocrinol 183:385–394

    Article  PubMed  CAS  Google Scholar 

  38. Onguru O, Scheithauer BW, Kovacs K et al (2004) Analysis of epidermal growth factor receptor and activated epidermal growth factor receptor expression in pituitary adenomas and carcinomas. Mod Pathol 17:772–780

    Article  PubMed  CAS  Google Scholar 

  39. Honda J, Oomizu S, Kiuchi Y et al (2000) Identification of epidermal growth factor mRNA-expressing cells in the mouse anterior pituitary. Neuroendocrinology 71:155–162

    Article  PubMed  CAS  Google Scholar 

  40. Fukuoka H, Cooper O, Ben-Shlomo A et al (2011) EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest 121:4712–4721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

M.R. is supported by the Else Kröner-Fresenius-Stiftung (Grant # 2012_A103) and the German Research Foundation (DFG, Grant # RE 752/20-1). L.G.P.R. is supported by funds from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA Grant Agreement No. 608765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reincke.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Rivas, L.G., Reincke, M. Genetics of Cushing’s disease: an update. J Endocrinol Invest 39, 29–35 (2016). https://doi.org/10.1007/s40618-015-0353-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0353-0

Keywords

Navigation