Skip to main content
Log in

TP53 polymorphism may contribute to genetic susceptibility to develop Hashimoto’s thyroiditis

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

p53, which is encoded by the tumor suppressor gene TP53, plays a crucial role in the regulation of mechanisms of cell cycle arrest and apoptosis. Some SNPs of TP53, involving a different apoptotic ability of p53, have been associated with increased susceptibility to develop autoimmune diseases as well as cancer. We investigated the genotypic distribution of TP53 exon 4 SNPs in a cohort of Caucasian patients affected by Hashimoto’s thyroiditis (HT).

Methods

Peripheral blood for DNA extraction was collected from 109 Caucasian unrelated subjects, 79 HT patients and 30 healthy controls. SNPs analysis was carried out by amplification and sequencing of exon 4 TP53.

Results

For the Pro72Arg (rs 1042522) SNP we found these rates in HT patients: 11.4 % wild-type C/C (Pro72Pro), 24.0 % heterozygous G/C (Pro72Arg), 64.6 % homozygous G/G (Arg72Arg). The corresponding rates in healthy controls were 10, 46.7 and 43.3 %, respectively. Thus, significantly different were G/C heterozygosity (24.0 vs 46.7 %, p = 0.039) and G/G homozygosity (64.6 vs 43.3 %, p = 0.042). These differences were also confirmed when comparing our study population to published Caucasian control groups. The other described SNPs (Pro34Pro rs 11575998, Pro36Pro rs1800370, Pro47Ser rs1800371, and Arg110Leu rs 11540654) were absent or very rare in our study population.

Conclusions

Our preliminary data, the first on a Caucasian population, indicate an increased prevalence of the homozygous genotype Arg/Arg and a decreased prevalence of heterozygous genotype Arg/Pro of rs 1042522 in HT patients compared to controls, suggesting that such SNP may contribute to confer susceptibility to HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283

    Article  CAS  PubMed  Google Scholar 

  2. Hainaut P, Hernandez T, Robinson A (1998) IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualization tools. Nucleic Acids Res 21:205–213

    Article  Google Scholar 

  3. Belyi VA, Ak P, Markert E (2010) The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 6:a001198

    Google Scholar 

  4. Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9:95–107

    Article  CAS  PubMed  Google Scholar 

  5. Krammer PH (2000) CD 95’s deadly mission in the immune system. Nature 407:789–795

    Article  CAS  PubMed  Google Scholar 

  6. Zhang S, Zheng M, Kibe R (2011) Trp53 negatively regulates autoimmunity via the STAT3-Th17 axis. FASEB J 25:2387–2398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kawashima H, Takatori H, Suzuki K (2013) Tumor suppressor p53 inhibits systemic autoimmune diseases by inducing regulatory T cells. J Immunol 191:3614–32623

    Article  CAS  PubMed  Google Scholar 

  8. Orsted DD, Bojesen SE, Tybjaerg-Hansen A (2007) Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population. J Exp Med 204:1295–1301

    Article  PubMed Central  PubMed  Google Scholar 

  9. Puente XS, Velasco G, Gutiérrez-Fernández A (2006) Comparative analysis of cancer genes in the human and chimpanzee genomes. BMC Genom 7:15

    Article  Google Scholar 

  10. Sjalander A, Birgander R, Saha N (1996) p53 polymorphisms and haplotypes show distinct differences between major ethnic groups. Hum Hered 46:41–48

    Article  CAS  PubMed  Google Scholar 

  11. Dumont P, Leu JI, Della Pietra AC (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357–365

    Article  CAS  PubMed  Google Scholar 

  12. Boltze C, Roessner O, Landt E (2002) Homozygous proline at codon 72 of p53 as a potential risk factor favoring the development of undifferentiated thyroid carcinoma. Int J Oncol 21:1151–1154

    CAS  PubMed  Google Scholar 

  13. Granja F, Morari J, Morari EC (2004) Proline homozygosity in codon 72 of p53 is a factor of susceptibility for thyroid cancer. Cancer Lett 210:151–157

    Article  CAS  PubMed  Google Scholar 

  14. Wang F, Wang P, Wang B (2014) Association between TP53 Arg72Pro polymorphism and thyroid carcinoma risk. Tumour Biol 35:2723–2728

    Article  CAS  PubMed  Google Scholar 

  15. Felley-Bosco E, Weston A, Cawley HM (1993) Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am J Hum Genet 53:752–759

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Li X, Dumont P, Della Pietra A (2005) The codon 47 polymorphism in p53 is functionally significant. J Biol Chem 280:24245–24251

    Article  CAS  PubMed  Google Scholar 

  17. Franchi A, Sardi I, Cetica V (2009) Pediatric sinonasal neuroendocrine carcinoma after treatment of retinoblastoma. Hum Pathol 40:750–755

    Article  PubMed  Google Scholar 

  18. Pearce EN, Farwell AP, Braverman LE (2003) Thyroiditis. N Eng J Med 348:2646–2655

    Article  Google Scholar 

  19. Aghini-Lombardi F, Vitti P, Antonangeli L, Southern Italy Study Group for Iodine Deficiency Disorders (2013) The size of the community rather than its geographical location better defines the risk of iodine deficiency: results of an extensive survey in Southern Italy. J Endocrinol Invest 36:282–286

    Article  CAS  PubMed  Google Scholar 

  20. Kleimbaum DG, Klein M (2002) A self-learning text. Logistic regression, Springer, New York, pp 7–26

  21. Weetman AP (2012) The immunopathogenesis of chronic autoimmune thyroiditis one century after hashimoto. Eur J Endocrinol 1:243–250

    Google Scholar 

  22. Weetman AP (2009) The genetics of autoimmune thyroid disease. Horm Metabol Res 41:421–425

    Article  CAS  Google Scholar 

  23. Prummel MF, Strieder T, Wiersinga WM (2004) The environment and autoimmune thyroid diseases. Eur J Endocrinol 150:605–618

    Article  CAS  PubMed  Google Scholar 

  24. Guerra A, Sapio MR, Carrano M, Di Stasi V, Volpe A, Murino A, Izzo G, Vitale M (2013) Prevalence of Dio 2(T92A) polymorphism and its association with thyroid autoimmunity. J Endocrinol Invest 36:303–306

    CAS  PubMed  Google Scholar 

  25. Agretti P, De Marco G, Di Cosmo C, Bagattini B, Ferrarini E, Montanelli L, Vitti P, Tonacchera M (2014) Frequency and effect on serum TSH of phosphodiesterase 8B (PDE8B) gene polymorphisms in patients with sporadic nonautoimmune subclinical hypothyroidism. J Endocrinol Invest 37:189–194

    Article  CAS  PubMed  Google Scholar 

  26. Yamanishi Y, Boyle DL, Pinkoski MJ (2002) Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol 160:123–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zheng SJ, Lamhamedi-Cherradi SE, Wang P (2005) Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes 54:1423–1428

    Article  CAS  PubMed  Google Scholar 

  28. Okuda M, Bernard CC (2003) Regulatory role of p53 in experimental autoimmune encephalomyelitis. J Neuroimmunol 135:29–37

    Article  CAS  PubMed  Google Scholar 

  29. Yao Q, Wang S, Glorioso JC (2001) Gene transfer of p53 to arthritic joints stimulates synovial apoptosis and inhibits inflammation. Mol Ther 3:901–910

    Article  CAS  PubMed  Google Scholar 

  30. Yamanishi Y, Boyle DL, Green DR (2005) p53 tumor suppressor gene mutations in fibroblast-like synoviocytes from erosion synovium and non-erosion synovium in rheumatoid arthritis. Arthritis Res Ther 7:R12–R18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lee YH, Bae SC, Choi SJ (2012) Associations between the p53 codon 72 polymorphisms and susceptibility to systemic lupus erythematosus and rheumatoid arthritis: a meta-analysis. Lupus 21:430–437

    Article  CAS  PubMed  Google Scholar 

  32. Hussain SP, Amstad P, Raja K (2000) Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res 60:3333–3337

    CAS  PubMed  Google Scholar 

  33. Manca Bitti ML, Saccucci P, Bottini E (2010) p53 codon 72 polymorphism and type 1 diabetes mellitus. J Pediat Endocrinol Metab 23:291–292

    CAS  Google Scholar 

  34. Bufalo NE, Santos RB, Cury AN (2008) Genetic polymorphisms associated with cigarette smoking and the risk of Graves’ disease. Clin Endocrinol (Oxf) 6:982–987

    Article  Google Scholar 

  35. Chen RH, Chang CT, Wang TY (2008) p53 codon 72 proline/arginine polymorphism and autoimmune thyroid diseases. J Clin Lab Anal 22:321–326

    Article  CAS  PubMed  Google Scholar 

  36. Salmaso C, Bagnasco M, Pesce G (2002) Regulation of apoptosis in endocrine autoimmunity: insights from Hashimoto’s thyroiditis and Graves’ disease. Ann N Y Acad Sci 966:496–501

    Article  CAS  PubMed  Google Scholar 

  37. Trimarchi F (2014) Clinical Endocrinology in the near future: a post-modern challenge. J Endocrinol Invest. doi:10.1007/s40618-014-0181-7

    Google Scholar 

Download references

Acknowledgements

This work was not supported by any grant.

Conflict of interest

There is no potential conflict of interest and the authors have nothing to disclose.

Ethical approval

The study was approved by the local ethics committee.

Informed consent

The informed consent was obtained from the patients for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Ruggeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, R.M., Vicchio, T.M., Giovinazzo, S. et al. TP53 polymorphism may contribute to genetic susceptibility to develop Hashimoto’s thyroiditis. J Endocrinol Invest 38, 1175–1182 (2015). https://doi.org/10.1007/s40618-015-0292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0292-9

Keywords

Navigation