Skip to main content
Log in

Heterogeneous phenotype in children affected by non-autoimmune hypothyroidism: an update

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

In the last decades, a higher incidence of congenital hypothyroidism (CH) has been recorded in Italy (1:1940) and worldwide, mainly due to the shift to lower screening TSH cutoffs. Although CH can also be caused by dysgenetic defects, most CH cases have recently been found to be more frequently associated with functional defects of an in situ thyroid gland. Although the clinical phenotype is milder with high prevalence of transient forms, some cases eventually prove to be permanent.

Results

Possible explanations of the raised incidence of CH are ethnic modifications of the screened population and the increasing incidence of preterm birth and multiple pregnancies. These findings are important in terms of public health and standardization of screening programmes for special at-risk categories such as preterms, acutely ill term neonates, low birth weight and very low birth weight infants, and newborns with specific drug exposure. Other environmental factors have contributed to the increased incidence of hypothyroidism, including thyroid disrupting chemicals, iodine supply (excess/deficiency), and drugs interfering with thyroid function. Finally, an increased prevalence of hypothyroidism has been documented in obese children and patients with syndromic forms (Williams, Down, Turner, pseudohypoparathyroidism). The clinical and molecular phenotype of patients with CH will be better defined thanks to novel genetic approach based on the systematic analysis of a panel of genes (TSHR, DUOX2, DUOXA, TPO, PDS, TG, NKX2.1, JAG1, GLIS3, FOXE1, PAX-8).

Conclusions

This review summarizes significant advances in the epidemiology and aetiology of non-autoimmune hypothyroidism, with a focus on thyroid dysfunction in preterm infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Léger J, Olivieri A, Donaldson M et al (2014) European society for paediatric endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. J Clin Endocrinol Metab 99(2):363–384

    Article  PubMed Central  PubMed  Google Scholar 

  2. Lanting CI, van Tijn DA, Loeber JG et al (2005) Clinical effectiveness and cost-effectiveness of the use of the thyroxine/thyroxine-binding globulin ratio to detect congenital hypothyroidism of thyroidal and central origin in a neonatal screening program. Pediatrics 116(1):168–173

    Article  PubMed  Google Scholar 

  3. Tajima T, Nakamura A, Morikawa S et al (2014) Neonatal screening and a new cause of congenital central hypothyroidism. Ann Pediatr Endocrinol Metab 19:117–121

    Article  PubMed Central  PubMed  Google Scholar 

  4. Zwaveling-Soonawala N, van Trotsenburg P, Verkerk H et al (2015) The severity of congenital hypothyroidism of central origin should not be underestimated. J Clin Endocrinol Metab 100(2):E297–E300

    Article  CAS  PubMed  Google Scholar 

  5. Tajima T, Ishizu K, Nakamura A (2013) Molecular and clinical findings in patients with LHX4 and OTX2 mutations. Clin Pediatr Endocrinol 22(2):15–23

    Article  PubMed Central  PubMed  Google Scholar 

  6. Szinnai G (2014) Clinical genetics of congenital hypothyroidism. Endocr Dev 26:60–78

    Article  PubMed  Google Scholar 

  7. Persani L, Calebiro D, Cordella D et al (2010) Genetics and phenomics of hypothyroidism due to TSH resistance. Mol Cell Endocrinol 322(1–2):72–82

    Article  CAS  PubMed  Google Scholar 

  8. Tenenbaum-Rakover Y, Almashanu S, Hess O et al (2015) Long-term outcome of loss-of-function mutations in TSH receptor gene. Thyroid 25:292–299

    Article  CAS  PubMed  Google Scholar 

  9. Calebiro D, Gelmini G, Cordella D et al (2012) Frequent TSH receptor genetic alterations with variable signaling impairment in a large series of children with nonautoimmune isolated hyperthyrotropinemia. J Clin Endocrinol Metab 97:E156–E160

    Article  CAS  PubMed  Google Scholar 

  10. Nicoletti A, Bal M, De Marco G et al (2009) Thyrotropin-stimulating hormone gene analysis in pediatric patients with non-autoimmune subclinical hypothyroidism. J Clin Endocrinol Metab 94:4187–4194

    Article  CAS  PubMed  Google Scholar 

  11. Vigone MC, Fugazzola L, Zamproni I et al (2005) Persistent mild hypothyroidism associated with novel sequence variants of the DUOX2 gene in two siblings. Hum Mutat 26(4):395

    Article  PubMed  Google Scholar 

  12. Muzza M, Rabbiosi S, Vigone MC et al (2014) The clinical and molecular characterization of patients with dyshormonogenic congenital hypothyroidism reveals specific diagnostic clues for DUOX2 defects. J Clin Endocrinol Metab 99(3):E544–E553

    CAS  PubMed  Google Scholar 

  13. Dussault JH (1999) The anecdotal history of screening for congenital hypothyroidism. J Clin Endocrinol Metab 84(12):4332–4334

    Article  CAS  PubMed  Google Scholar 

  14. Rastogi MV, LaFranchi SH (2010) Congenital hypothyroidism. Orphanet J Rare Dis 5:17

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wassner AJ, Brown RS (2013) Hypothyroidism in the newborn period. Curr Opin Endocrinol Diabetes Obes 20(5):449–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Olivieri A, Fazzini C, Medda E (2015) Multiple factors influencing the incidence of congenital hypothyroidism detected by neonatal screening. Horm Res Paediatr 83:86–93

    Article  CAS  PubMed  Google Scholar 

  17. Corbetta C, Weber G, Cortinovis F et al (2009) A 7-year experience with low blood TSH cutoff levels for neonatal screening reveals an unsuspected frequency of congenital hypothyroidism (CH). Clin Endocrinol (Oxf) 71(5):739–745

    Article  CAS  Google Scholar 

  18. Mengreli C, Kanaka-Gantenbein C, Girginoudis P et al (2010) Screening for congenital hypothyroidism: the significance of threshold limit in false-negative results. J Clin Endocrinol Metab 95(9):4283–4290

    Article  CAS  PubMed  Google Scholar 

  19. Deladoëy J, Ruel J, Giguère Y, Van Vliet G (2011) Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Québec. J Clin Endocrinol Metab 96(8):2422–2429

    Article  PubMed  Google Scholar 

  20. Olivieri A, Corbetta C, Weber G et al (2013) Congenital hypothyroidism due to defects of thyroid development and mild increase of TSH at screening: data from the Italian National Registry of infants with congenital hypothyroidism. J Clin Endocrinol Metab 98(4):1403–1408

    Article  CAS  PubMed  Google Scholar 

  21. Rabbiosi S, Vigone MC, Cortinovis F et al (2013) Congenital hypothyroidism with eutopic thyroid gland: analysis of clinical and biochemical features at diagnosis and after re-evaluation. J Clin Endocrinol Metab 98(4):1395–1402

    Article  CAS  PubMed  Google Scholar 

  22. Hinton CF, Harris KB, Borgfeld L et al (2010) Trends in incidence rates of congenital hypothyroidism related to select demographic factors: data from the United States, California, Massachusetts, New York, and Texas. Pediatrics 125(Suppl 2):S37–S47

    Article  PubMed  Google Scholar 

  23. Beck S, Wojdyla D, Say L et al (2010) The worldwide incidence of preterm: a systematic review of maternal birth mortality and morbidity. Bull World Health Organ 88:31–38

    Article  PubMed Central  PubMed  Google Scholar 

  24. Vigone MC, Caiulo S, Di Frenna M et al (2014) Evolution of thyroid function in preterm infants detected by screening for congenital hypothyroidism. J Pediatr 164(6):1296–1302

    Article  CAS  PubMed  Google Scholar 

  25. Radetti G, Fanolla A, Pappalardo L et al (2007) Prematurity may be a risk factor for thyroid dysfunction in childhood. J Clin Endocrinol Metab 92(1):155–159

    Article  CAS  PubMed  Google Scholar 

  26. Ares S, Quero J, de Escobar GM (2008) Iodine balance, iatrogenic excess, and thyroid dysfunction in premature newborns. Semin Perinatol 32(6):407–412

    Article  PubMed  Google Scholar 

  27. Cassio A, Corbetta C, Antonozzi I et al (2013) The Italian screening program for primary congenital hypothyroidism: actions to improve screening, diagnosis, follow-up, and surveillance. J Endocrinol Invest 36(3):195–203

    CAS  PubMed  Google Scholar 

  28. LaFranchi SH (2010) Newborn screening strategies for congenital hypothyroidism: an update. J Inherit Metab Dis 33(Suppl 2):S225–S233

    Article  PubMed  Google Scholar 

  29. Goldsmit GS, Valdes M, Herzovich V et al (2011) Evaluation and clinical application of changes in thyroid hormone and TSH levels in critically ill full-term newborns. J Perinat Med 39(1):59–64

    Article  CAS  PubMed  Google Scholar 

  30. Olivieri A, Stazi MA, Mastroiacovo P et al (2002) A population-based study on the frequency of additional congenital malformations in infants with congenital hypothyroidism: data from the Italian Registry for Congenital Hypothyroidism (1991–1998). J Clin Endocrinol Metab 87(2):557–562

    CAS  PubMed  Google Scholar 

  31. Olivieri A, Medda E, De Angelis S et al (2007) High risk of congenital hypothyroidism in multiple pregnancies. J Clin Endocrinol Metab 92(8):3141–3147

    Article  CAS  PubMed  Google Scholar 

  32. Filippi L, Pezzati M, Poggi C et al (2007) Dopamine versus dobutamine in very low birthweight infants: endocrine effects. Arch Dis Child Fetal Neonatal Ed 92(5):F367–F371

    Article  PubMed Central  PubMed  Google Scholar 

  33. Olivieri A (2012) Epidemiology of congenital hypothyroidism: what can be deduced from the Italian registry of infants with congenital hypothyroidism. J Matern Fetal Neonatal Med 25(Suppl 5):7–9

    Article  PubMed  Google Scholar 

  34. Reynolds MA, Schieve LA, Martin JA et al (2003) Trends in multiple births conceived using assisted reproductive technology, United States, 1997–2000. Pediatrics 111(5 Pt 2):1159–1162

    PubMed  Google Scholar 

  35. Sakka SD, Malamitsi-Puchner A, Loutradis D (2009) Euthyroid hyperthyrotropinemia in children born after in vitro fertilization. J Clin Endocrinol Metab 94(4):1338–1341

    Article  CAS  PubMed  Google Scholar 

  36. Zimmermann MB (2013) Iodine deficiency and excess in children: worldwide status in 2013. Endocr Pract 19(5):839–846

    Article  PubMed  Google Scholar 

  37. Global Iodine Nutrition Scorecard (2014) Available at: http//www.ign.org/cm_data/Scorecard_IGN_website_02_03_2015.pdf. Accessed 23 March 2015

  38. Harris KB, Pass KA (2007) Increase in congenital hypothyroidism in New York State and in the United States. Mol Genet Metab 91(3):268–277

    Article  CAS  PubMed  Google Scholar 

  39. Belfort MB, Pearce EN, Braverman LE et al (2012) Low iodine content in the diets of hospitalized preterm infants. J Clin Endocrinol Metab 97(4):E632–E636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Andra SS, Makris K (2012) Thyroid disrupting chemicals in plastic additives and thyroid health. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 30(2):107–151

    Article  CAS  PubMed  Google Scholar 

  41. Chevrier J, Warner M, Gunier RB et al (2014) Serum dioxin concentrations and thyroid hormone levels in the Seveso Women’s Health Study. Am J Epidemiol 180(5):490–498

    Article  PubMed  Google Scholar 

  42. Baccarelli A, Giacomini SM, Corbetta C et al (2008) Neonatal thyroid function in Seveso 25 years after maternal exposure to dioxin. PLoS Med 5(7):e161

    Article  PubMed Central  PubMed  Google Scholar 

  43. Williams FL, Ogston SA, van Toor H et al (2005) Serum thyroid hormones in preterm infants: associations with postnatal illnesses and drug usage. J Clin Endocrinol Metab 90(11):5954–5963

    Article  CAS  PubMed  Google Scholar 

  44. Knudsen N, Laurberg P, Rasmussen LB et al (2005) Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab 90(7):4019–4024

    Article  CAS  PubMed  Google Scholar 

  45. Reinehr T (2010) Obesity and thyroid function. Mol Cell Endocrinol 316(2):165–171

    Article  CAS  PubMed  Google Scholar 

  46. Selicorni A, Fratoni A, Pavesi MA et al (2006) Thyroid anomalies in Williams syndrome: investigation of 95 patients. Am J Med Genet A 140(10):1098–1101

    Article  CAS  PubMed  Google Scholar 

  47. Stagi S, Bindi G, Neri AS et al (2005) Thyroid function and morphology in patients affected by Williams syndrome. Clin Endocrinol (Oxf) 63(4):456–460

    Article  Google Scholar 

  48. Cherniske EM, Carpenter TO, Klaiman C et al (2004) Multisystem study of 20 older adults with Williams syndrome. Am J Med Genet A 131(3):255–264

    Article  PubMed  Google Scholar 

  49. Claret C, Goday A, Benaiges D et al (2013) Subclinical hypothyroidism in the first years of life in patients with Down syndrome. Pediatr Res 73(5):674–678

    Article  CAS  PubMed  Google Scholar 

  50. Jørgensen KT, Rostgaard K, Bache I et al (2010) Autoimmune diseases in women with Turner’s syndrome. Arthritis Rheum 62(3):658–666

    Article  PubMed  Google Scholar 

  51. Grossi A, Crinò A, Luciano R et al (2013) Endocrine autoimmunity in Turner syndrome. Ital J Pediatr 39:79

    Article  PubMed Central  PubMed  Google Scholar 

  52. Huang SA, Tu HM, Harney JW et al (2000) Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med 343(3):185–189

    Article  CAS  PubMed  Google Scholar 

  53. Vigone MC, Cortinovis F, Rabbiosi S et al (2012) Difficult treatment of consumptive hypothyroidism in a child with massive parotid hemangioma. J Pediatr Endocr Met 25(1–2):153–155

    CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, informed consent is not required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Weber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigone, M.C., Di Frenna, M. & Weber, G. Heterogeneous phenotype in children affected by non-autoimmune hypothyroidism: an update. J Endocrinol Invest 38, 835–840 (2015). https://doi.org/10.1007/s40618-015-0288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0288-5

Keywords

Navigation