Skip to main content
Log in

Prematurity and low birth weight lead to altered bone geometry, strength, and quality in children

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Prematurity and low birth weight are associated with a decrease in bone mass. Aim of the study was to investigate bone geometry, strength, and quality in children born at term small for gestational age (term SGA), premature appropriate for gestational age (prem AGA), and premature SGA (prem SGA).

Methods

91 patients (46 f, 45 m), mean age 11.28 years, height SDS 0.03 ± 0.21, and BMI SDS −0.31 ± 0.19. 20 were term SGA, 22 prem SGA, and 49 prem AGA. Bone geometry was assessed on the 2nd metacarpal bone, by evaluating the outer and inner diameter, the cortical area, medullary area, metacarpal index, cross-sectional area, and bone strength. Bone quality was evaluated by ultrasound and expressed as amplitude-dependent speed of sound and bone transmission time (BTT).

Results

Term SGA, prem SGA, and prem AGA had values of bone geometry, strength, and quality significantly lower than our reference range (p < 0.05). Findings in the three groups were similar, apart from BTT, which was significantly reduced in prem SGA (p < 0.05). Fat percentage was the main determinant of BTT.

Conclusions

Children born either prematurely or SGA seem to have smaller and weaker bones. Those born both premature and SGA were the most affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saenger P, Czernichow P, Hughes I, Reiter EO (2007) Small for gestational age: short stature and beyond. Endocr Rev 28:219–251

    Article  CAS  PubMed  Google Scholar 

  2. Rowe DL, Derraik JG, Robinson E, Cutfield WS, Hofman PL (2011) Preterm birth and the endocrine regulation of growth in childhood and adolescence. Clin Endocrinol (Oxf) 75:661–665

    Article  CAS  Google Scholar 

  3. Hofman PL, Regan F, Jefferies CA, Cutfield WS (2006) Prematurity and programming: are there later metabolic sequelae? Metab Syndr Relat Disord 4:101–112

    Article  PubMed  Google Scholar 

  4. Hovi P, Andersson S, Eriksson JG et al (2007) Glucose regulation in young adults with very low birth weight. N Engl J Med 356:2053–2063

    Article  CAS  PubMed  Google Scholar 

  5. Radetti G, Renzullo L, Gottardi E, D’Addato G, Messner H (2004) Altered thyroid and adrenal function in children born at term and preterm, small for gestational age. J Clin Endocrinol Metab 89:6320–6324

    Article  CAS  PubMed  Google Scholar 

  6. Radetti G, Fanolla A, Pappalardo L, Gottardi E (2007) Prematurity may be a risk factor for thyroid dysfunction in childhood. J Clin Endocrinol Metab 92:155–159

    Article  CAS  PubMed  Google Scholar 

  7. Antoniades L, MacGregor AJ, Andrew T, Spector TD (2003) Association of birth weight with osteoporosis and osteoarthritis in adult twins. Rheumatology (Oxford) 42:791–796

    Article  CAS  Google Scholar 

  8. Cooper C, Fall C, Egger P, Hobbs R, Eastell R, Barker D (1997) Growth in infancy and bone mass in later life. Ann Rheum Dis 56:17–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Putzker S, Pozza RD, Schwarz HP, Schmidt H, Bechtold S (2012) Endosteal bone storage in young adults born small for gestational age—a study using peripheral quantitative computed tomography. Clin Endocrinol (Oxf) 76:485–491

    Article  CAS  Google Scholar 

  10. Bertino E, Spada E, Occhi L et al (2010) Neonatal anthropometric charts: the Italian neonatal study compared with other European studies. J Pediatr Gastroenterol Nutr 51:353–361

    PubMed  Google Scholar 

  11. Lubchenko LO, Hansman C, Boyd R (1966) Intrauterine growth in length and head circumference as estimated from live births at gestational ages from 26 to 41 wk. Pediatrics 37:403–408

    Google Scholar 

  12. Cacciari E, Milani S, Balsamo A et al (2006) Italian cross-sectional growth charts for height, weight and BMI (2 to 20 years). J Endocrinol Invest 29:581–593

    Article  CAS  PubMed  Google Scholar 

  13. McCarthy HD, Jarrett KV, Crawley HF (2001) The development of waist circumference percentiles in British children aged 5.0–16.9 years. Eur J Clin Nutr 55:902–907

    Article  CAS  PubMed  Google Scholar 

  14. Slaughter NH, Lohman TG, Boileau RA et al (1988) Skinfold equation for estimation of body fatness in children and youth. Hum Biol 60:709–723

    CAS  PubMed  Google Scholar 

  15. Greulich WW, Pyle SL (1969) Radiographic atlas of skeletal development of the hand and wrist, 2nd edn. Stanford University Press, California

  16. Zamberlan N, Radetti G, Paganini C et al (1996) Evaluation of cortical thickness and bone density by roentgen microdensitometry in growing males and females. Eur J Pediatr 155:377–382

    Article  CAS  PubMed  Google Scholar 

  17. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    Article  CAS  PubMed  Google Scholar 

  18. Genant HK, Engelke K, Fuerst T et al (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730

    Article  CAS  PubMed  Google Scholar 

  19. Kardinaal AF, Hoorneman G, Väänänen K et al (2000) Determinants of bone mass and bone geometry in adolescent and young adult women. Calcif Tissue Int 66:81–89

    Article  CAS  PubMed  Google Scholar 

  20. Baroncelli GI, Federico G, Vignolo M et al (2006) Phalangeal quantitative ultrasound group. cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone 39:159–173

    Article  PubMed  Google Scholar 

  21. Baroncelli GI, Federico G, Bertelloni S et al (2003) Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr Res 54:125–136

    Article  PubMed  Google Scholar 

  22. Wilczek ML, Kälvesten J, Algulin J, Beiki O, Brismar TB (2013) Digital X-ray radiogr ammetry of hand or wrist radiographs can predict hip fracture risk-a study in 5,420 women and 2,837 men. Eur Radiol 23:1383–1391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Forsblad-d’Elia H, Carlsten H (2011) Bone mineral density by digital X-ray radiogrammetry is strongly decreased and associated with joint destruction in long-standing rheumatoid arthritis: a cross-sectional study. BMC Musculoskelet Disord 12:242

    Article  PubMed Central  PubMed  Google Scholar 

  24. Adami S, Zamberlan N, Gatti D et al (1996) Computed radiographic absorptiometry and morphometry in the assessment of postmenopausal bone loss. Osteoporos Int 6:8–13

    Article  CAS  PubMed  Google Scholar 

  25. Beltrand J, Alison M, Nicolescu R et al (2008) Bone mineral content at birth is determined both by birth weight and fetal growth pattern. Pediat Res 64:86–90

    Article  PubMed  Google Scholar 

  26. McGuigan FE, Murray L, Gallagher A et al (2002) Genetic and environmental determinants of peak bone mass in young men and women. J Bone Miner Res 17:1273–1279

    Article  CAS  PubMed  Google Scholar 

  27. Dennison EM, Syddall HE, Sayer AA, Gilbody HJ, Cooper C (2005) Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire cohort study. Pediatr Res 57:582–586

    Article  PubMed  Google Scholar 

  28. Boguszewski M, Rosberg S, Albertsson-Wikland K (1995) Spontaneous 24-h growth hormone profiles in prepubertal small for gestational age children. J Clin Endocrinol Metab 80:2599–2606

    CAS  PubMed  Google Scholar 

  29. Bechtold S, Ripperger P, Dalla Pozza R et al (2010) Dynamics of body composition and bone in patients with juvenile idiopathic arthritis treated with growth hormone. J Clin Endocrinol Metab 95:178–185

    Article  CAS  PubMed  Google Scholar 

  30. Radetti G, D’Addato G, Gatti D, Bozzola M, Adami S (2006) Influence of two different GH dosage regimens on final height, bone geometry and bone strength in GH-deficient children. Eur J Endocrinol 154:479–482

    Article  CAS  PubMed  Google Scholar 

  31. Backström MC, Kuusela AL, Koivisto AM, Sievänen H (2005) Bone structure and volumetric density in young adults born prematurely: a peripheral quantitative computed tomography study. Bone 36:688–693

    Article  PubMed  Google Scholar 

  32. Kuh D, Wills AK, Shah I, Prentice A et al (2014) Growth from birth to adulthood and bone phenotype in early old age: a British birth cohort study. J Bone Miner Res 29:123–133

    Article  PubMed Central  PubMed  Google Scholar 

  33. Bakker I, Twisk JW, Van Mechelen W, Kemper HC (2003) Fat-free body mass is the most important body composition determinant of 10-year longitudinal development of lumbar bone in adult men and women. J Clin Endocrinol Metab 88:2607–2613

    Article  CAS  PubMed  Google Scholar 

  34. Edwards M, Gregson C, Patel H et al (2013) Muscle size, strength and physical performance and their associations with bone structure in the Hertfordshire cohort study. J Bone Miner Res 28:2295–2304

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Conflict of interest

The authors do not declare any conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Radetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longhi, S., Mercolini, F., Carloni, L. et al. Prematurity and low birth weight lead to altered bone geometry, strength, and quality in children. J Endocrinol Invest 38, 563–568 (2015). https://doi.org/10.1007/s40618-014-0230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0230-2

Keywords

Navigation