Skip to main content
Log in

Relationships between serum omentin-1, body fat mass and bone mineral density in healthy Chinese male adults in Changsha area

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

The present study is firstly designed to identify the relationship between serum omentin-1 concentration, body fat mass and bone mineral density in healthy Chinese male adults in Changsha city.

Methods

A total of 219 (20–80 years old) healthy subjects were enrolled in this cross-sectional study. Serum omentin-1, adiponectin, leptin, resistin and bone turn over biochemical markers were measured with enzyme-linked immunosorbent assay. Bone mineral density (BMD) and fat body composition were determined using dual-energy-X-ray absorptiometry.

Results

Serum omentin-1 levels in the overweight subjects were significantly lower than those of the subjects with normal weight (p < 0.05). Omentin-1 was negatively correlated with weight (r = −0.418), body mass index (BMI, r = −0.419), waist circumference (r = −0.402), waist-to-hip ratio (WHR, r = −0.355), fat body mass (FBM, r = −0.430), fat % (r = −0.408), trunk fat (−0.431). However, after controlling for age, BMI and FBM, no significant correlation was noticed between omentin-1 and BMD at different skeletal sites. Pearson’s correlation coefficients and partial correlation coefficients after adjustment showed no significant correlations between omentin-1 and bone turn over biochemical markers, including bone-specific alkaline phosphatase and bone cross-linked N-terminal telopeptides of type I collagen. Multiple line stepwise regression analysis revealed that FBM, WHR, adiponectin were important variables affecting omentin-1. Moreover, lean tissue mass was the most important factor affecting BMD and explained 10.5–14.7 % of the variance. Omentin-1, leptin and resistin were not the predictors of BMD.

Conclusions

Serum omentin-1 was negatively correlated with FBM and BMI in healthy Chinese male adults, It was not significantly correlated with bone turnover biochemical markers. Omentin-1 may exert ambiguous effects on BMD, which maybe caused by the complex interactions among adipokines, hormonal activity, and body composition and bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Meier U, Gressner AM (2004) Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 50:1511–1525

    Article  PubMed  CAS  Google Scholar 

  2. Kralisch S, Klein J, Bluher M, Paschke R, Stumvoll M, Fasshauer M (2005) Therapeutic perspectives of adipocytokines. Expert Opin Pharmacother 6:863–872

    Article  PubMed  CAS  Google Scholar 

  3. Schaffler A, Neumeier M, Herfarth H, Furst A, Scholmerich J, Buchler C (2005) Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta 1732:96–102

    Article  PubMed  CAS  Google Scholar 

  4. Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, Shuldiner AR, Fried SK, McLenithan JC, Gong DW (2006) Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab 290:E1253–E1261

    Article  PubMed  CAS  Google Scholar 

  5. de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, Ndubuizu K, Patil S, Schwartz A, Kligman M, Fried SK, Gong DW, Shuldiner AR, Pollin TI, McLenithan JC (2007) Omentin plasma levels and gene expression are decreased in obesity. Diabetes 56:1655–1661

    Article  PubMed  Google Scholar 

  6. Moreno-Navarrete JM, Catalan V, Ortega F, Gomez-Ambrosi J, Ricart W, Fruhbeck G, Fernandez-Real JM (2010) Circulating omentin concentration increases after weight loss. Nutr Metab (Lond) 7:27

    Article  Google Scholar 

  7. Tan BK, Pua S, Syed F, Lewandowski KC, O’Hare JP, Randeva HS (2008) Decreased plasma omentin-1 levels in type 1 diabetes mellitus. Diabet Med 25:1254–1255

    Article  PubMed  CAS  Google Scholar 

  8. Tan BK, Adya R, Farhatullah S, Chen J, Lehnert H, Randeva HS (2010) Metformin treatment may increase omentin-1 levels in women with polycystic ovary syndrome. Diabetes 59:3023–3031

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Duan XY, Xie PL, Ma YL, Tang SY (2011) Omentin inhibits osteoblastic differentiation of calcifying vascular smooth muscle cells through the PI3K/Akt pathway. Amino Acids 41:1223–1231

    Article  PubMed  CAS  Google Scholar 

  10. Yamawaki H, Tsubaki N, Mukohda M, Okada M, Hara Y (2010) Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun 393:668–672

    Article  PubMed  CAS  Google Scholar 

  11. Guo LJ, Jiang TJ, Liao L, Liu H, He HB (2013) Relationship between serum omentin-1 level and bone mineral density in girls with anorexia nervosa. J Endocrinol Invest 36:190–194

    PubMed  CAS  Google Scholar 

  12. Xie H, Xie PL, Luo XH, Wu XP, Zhou HD, Tang SY, Liao EY (2012) Omentin-1 exerts bone-sparing effect in ovariectomized mice. Osteoporos Int 23:1425–1436

    Article  PubMed  CAS  Google Scholar 

  13. Xie H, Xie PL, Wu XP, Chen SM, Zhou HD, Yuan LQ, Sheng ZF, Tang SY, Luo XH, Liao EY (2011) Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression. Cardiovasc Res 92:296–306

    Article  PubMed  CAS  Google Scholar 

  14. Reid IR (2010) Fat and bone. Arch Biochem Biophys 503:20–27

    Article  PubMed  CAS  Google Scholar 

  15. Williams GA, Wang Y, Callon KE, Watson M, Lin JM, Lam JB, Costa JL, Orpe A, Broom N, Naot D, Reid IR, Cornish J (2009) In vitro and in vivo effects of adiponectin on bone. Endocrinology 150:3603–3610

    Article  PubMed  CAS  Google Scholar 

  16. Confavreux CB, Levine RL, Karsenty G (2009) A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Mol Cell Endocrinol 310:21–29

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Lim S, Joung H, Shin CS, Lee HK, Kim KS, Shin EK, Kim HY, Lim MK, Cho SI (2004) Body composition changes with age have gender-specific impacts on bone mineral density. Bone 35:792–798

    Article  PubMed  Google Scholar 

  18. Mizuma N, Mizuma M, Yoshinaga M, Iwamoto I, Matsuo T, Douchi T, Osame M (2006) Difference in the relative contribution of lean and fat mass components to bone mineral density with generation. J Obstet Gynaecol Res 32:184–189

    Article  PubMed  Google Scholar 

  19. Cai RC, Wei L, Di JZ, Yu HY, Bao YQ, Jia WP (2009) Expression of omentin in adipose tissues in obese and type 2 diabetic patients. Zhonghua Yi Xue Za Zhi 89:381–384

    PubMed  CAS  Google Scholar 

  20. Tohidi M, Akbarzadeh S, Larijani B, Kalantarhormozi M, Ostovar A, Assadi M, Vahdat K, Farrokhnia M, Sanjdideh Z, Amirinejad R, Nabipour I (2012) Omentin-1, visfatin and adiponectin levels in relation to bone mineral density in Iranian postmenopausal women. Bone 51:876–881

    Article  PubMed  CAS  Google Scholar 

  21. Assadi M, Salimipour H, Akbarzadeh S, Nemati R, Jafari SM, Bargahi A, Samani Z, Seyedabadi M, Sanjdideh Z, Nabipour I (2011) Correlation of circulating omentin-1 with bone mineral density in multiple sclerosis: the crosstalk between bone and adipose tissue. PLoS ONE 6:e24240

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Oh KW, Lee WY, Rhee EJ, Baek KH, Yoon KH, Kang MI, Yun EJ, Park CY, Ihm SH, Choi MG, Yoo HJ, Park SW (2005) The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin Endocrinol (Oxf) 63:131–138

    Article  CAS  Google Scholar 

  23. Moseley KF, Dobrosielski DA, Stewart KJ, De Beur SM, Sellmeyer DE (2011) Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus. Clin Endocrinol (Oxf) 74:565–571

    Article  CAS  Google Scholar 

  24. Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, Cortet B (2011) Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:2703–2713

    Article  PubMed  CAS  Google Scholar 

  25. Holecki M, Wiecek A (2010) Relationship between body fat mass and bone metabolism. Pol Arch Med Wewn 120:361–367

    PubMed  CAS  Google Scholar 

  26. Wang QP, Yang L, Li XP, Xie H, Liao EY, Wang M, Luo XH (2012) Effects of 17beta-estradiol on adiponectin regulation of the expression of osteoprotegerin and receptor activator of nuclear factor-kappaB ligand. Bone 51:515–523

    Article  PubMed  CAS  Google Scholar 

  27. Sheng Z, Xu K, Ou Y, Dai R, Luo X, Liu S, Su X, Wu X, Xie H, Yuan L, Liao E (2011) Relationship of body composition with prevalence of osteoporosis in central south Chinese postmenopausal women. Clin Endocrinol (Oxf) 74:319–324

    Article  Google Scholar 

  28. Kobayashi Y, Udagawa N, Takahashi N (2009) Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr 19:61–72

    Article  PubMed  CAS  Google Scholar 

  29. Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Morcov C, Vulpoi C, Branisteanu D (2012) Correlation between adiponectin, leptin, insulin growth factor-1 and bone mineral density in pre and postmenopausal women. Rev Med Chir Soc Med Nat Iasi 116:785–789

    PubMed  Google Scholar 

  31. Gregson CL, Paggiosi MA, Crabtree N, Steel SA, McCloskey E, Duncan EL, Fan B, Shepherd JA, Fraser WD, Smith GD, Tobias JH (2013) Analysis of body composition in individuals with high bone mass reveals a marked increase in fat mass in women but not men. J Clin Endocrinol Metab 98:818–828

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Richards JB, Valdes AM, Burling K, Perks UC, Spector TD (2007) Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab 92:1517–1523

    Article  PubMed  CAS  Google Scholar 

  33. Kontogianni MD, Dafni UG, Routsias JG, Skopouli FN (2004) Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res 19:546–551

    Article  PubMed  CAS  Google Scholar 

  34. Blain H, Vuillemin A, Guillemin F, Durant R, Hanesse B, de Talance N, Doucet B, Jeandel C (2002) Serum leptin level is a predictor of bone mineral density in postmenopausal women. J Clin Endocrinol Metab 87:1030–1035

    Article  PubMed  CAS  Google Scholar 

  35. Wosje KS, Binkley TL, Kalkwarf HJ, Specker BL (2004) Relationships between bone mass and circulating leptin concentrations in Hutterites. Bone 34:1017–1022

    Article  PubMed  CAS  Google Scholar 

  36. Juan CC, Au LC, Fang VS, Kang SF, Ko YH, Kuo SF, Hsu YP, Kwok CF, Ho LT (2001) Suppressed gene expression of adipocyte resistin in an insulin-resistant rat model probably by elevated free fatty acids. Biochem Biophys Res Commun 289:1328–1333

    Article  PubMed  CAS  Google Scholar 

  37. Schinke T, Haberland M, Jamshidi A, Nollau P, Rueger JM, Amling M (2004) Cloning and functional characterization of resistin-like molecule gamma. Biochem Biophys Res Commun 314:356–362

    Article  PubMed  CAS  Google Scholar 

  38. Yang B, Sun H, Wan Y, Wang H, Qin W, Yang L, Zhao H, Yuan J, Yao B (2012) Associations between testosterone, bone mineral density, vitamin D and semen quality in fertile and infertile Chinese men. Int J Androl 35:783–792

    Article  PubMed  CAS  Google Scholar 

  39. Abu EO, Horner A, Kusec V, Triffitt JT, Compston JE (1997) The localization of androgen receptors in human bone. J Clin Endocrinol Metab 82:3493–3497

    Article  PubMed  CAS  Google Scholar 

  40. De Oliveira DH, Fighera TM, Bianchet LC, Kulak CA, Kulak J (2012) Androgens and bone. Minerva Endocrinol 37:305–314

    PubMed  Google Scholar 

  41. Kang D, Liu Z, Wang Y, Zhang H, Feng X, Cao W, Wang P (2014)Relationship of body composition with bone mineral density in northern Chinese men by body mass index levels. J Endocrinol Invest. [Epub ahead of print]

  42. Misra M, Klibanski A (2011) Bone metabolism in adolescents with anorexia nervosa. J Endocrinol Invest 34:324–332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X.P., Zeng, S., Wang, M. et al. Relationships between serum omentin-1, body fat mass and bone mineral density in healthy Chinese male adults in Changsha area. J Endocrinol Invest 37, 991–1000 (2014). https://doi.org/10.1007/s40618-014-0140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0140-3

Keywords

Navigation