Skip to main content

Advertisement

Log in

GLP-1: benefits beyond pancreas

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

An Erratum to this article was published on 02 November 2014

Abstract

Introduction

Glucagon-like peptide 1 (GLP-1) is an intestinal hormone secreted after the ingestion of various nutrients. The main role of GLP-1 is to stimulate insulin secretion in a glucose-dependent manner. However, the expression of GLP-1 receptor was found to be expressed in a variety of tissues beyond pancreas such as lung, stomach, intestine, kidney, heart and brain. Beyond pancreas, a beneficial effect of GLP-1 on body weight reduction has been shown, suggesting its role for the treatment of obesity. In addition, GLP-1 has been demonstrated to reduce cardiovascular risk factors and to have a direct cardioprotective effect, fostering heart recovery after ischemic injury. Further, data from both experimental animal models and human studies have shown beneficial effect of GLP-1 on bone metabolism, either directly or indirectly on bone cells.

Materials and methods

We review here the recent findings of the extra-pancreatic effects of GLP-1 focusing on both basic and clinical studies, thus opening future perspectives to the use of GLP-1 analogs for the treatment of disease beyond type 2 diabetes.

Conclusion

Finally, the GLP-1 has been demonstrated to have a beneficial effect on both vascular, degenerative diseases of central nervous system and psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439. doi:10.1152/physrev.00034.2006

    CAS  PubMed  Google Scholar 

  2. Lamont BJ, Li Y, Kwan E et al (2012) Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice. J Clin Invest 122:388–402

    CAS  PubMed Central  PubMed  Google Scholar 

  3. D’Alessio DA, Kahn SE, Leusner CR, Ensinck JW (1994) Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J Clin Invest 93:2263–2266. doi:10.1172/JCI117225

    PubMed Central  PubMed  Google Scholar 

  4. Chai W, Zhang X, Barrett EJ, Liu Z (2014) Glucagon-like peptide 1 recruits muscle microvasculature and improves insulin’s metabolic action in the presence of insulin resistance. Diabetes

  5. Hare KJ, Knop FK, Asmar M et al (2009) Preserved inhibitory potency of GLP-1 on glucagon secretion in type 2 diabetes mellitus. J Clin Endocrinol Metab 94:4679–4687

    CAS  PubMed  Google Scholar 

  6. Creutzfeldt WO, Kleine N, Willms B et al (1996) Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 19:580–586

    CAS  PubMed  Google Scholar 

  7. Nauck MA, Niedereichholz U, Ettler R et al (1997) Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 273:981–988

    Google Scholar 

  8. Blundell JE, Naslund E (1999) Glucagon-like peptide-1, satiety and appetite control. Br J Nutr 81:259–260

    CAS  PubMed  Google Scholar 

  9. Pyke C, Heller RS, Kirk RK et al (2014) GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155:1280–1290

    PubMed  Google Scholar 

  10. Mikhail N (2014) Effects of incretin-based therapy in patients with heart failure and myocardial infarction. Endocrine. doi:10.1007/s12020-014-0175-4

    Google Scholar 

  11. Barrera JG, Sandoval DA, D’Alessio DA, Seeley RJ (2011) GLP-1 and energy balance: an integrated model of short-term and long-term control. Nat Rev Endocrinol 7:507–516. doi:10.1038/nrendo.2011.77

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Hsieh J, Longuet C, Baker CL et al (2010) The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia 53:552–561

    CAS  PubMed  Google Scholar 

  13. Imeryuz N, Yegen BC, Bozkurt A et al (1997) Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol 273:920–927

    Google Scholar 

  14. Yamada C, Yamada Y, Tsukiyama K et al (2008) The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149:574–579

    CAS  PubMed  Google Scholar 

  15. Seufert J, Gallwitz B (2013) The extra-pancreatic effects of GLP-1 receptor agonists: a focus on the cardiovascular, gastrointestinal and central nervous systems. Diabetes Obes Metab

  16. Seino Y, Fukushima M, Yabe D (2010) GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Investig 1:8–23. doi:10.1111/j.2040-1124.2010.00022.x

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Turton MD, O’Shea D, Gunn I et al (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72. doi:10.1038/379069a0

    CAS  PubMed  Google Scholar 

  18. Alhadeff AL, Rupprecht LE, Hayes MR (2012) GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 153:647–658

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Dossat AM, Lilly N, Kay K, Williams DL (2011) Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci 31:14453–14457

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Bullock BP, Heller RS, Habener JF (1996) Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137:2968–2978

    CAS  PubMed  Google Scholar 

  21. Arakawa M, Mita T, Azuma K et al (2010) Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59:1030–1037. doi:10.2337/db09-1694

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Martin B, Dotson CD, Shin Y-K et al (2009) Modulation of taste sensitivity by GLP-1 signaling in taste buds. Ann N Y Acad Sci 1170:98–101. doi:10.1111/j.1749-6632.2009.03920.x

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Lankat-Buttgereit B, Goke R, Fehmann HC et al (1994) Molecular cloning of a cDNA encoding for the GLP-1 receptor expressed in rat lung. Exp Clin Endocrinol 102:341–347

    CAS  PubMed  Google Scholar 

  24. Liberman A, Esser M, Marx N, Burgmaier M (2013) Glucagon-like peptide-1(9-36) inhibits chemokine-induced migration of human CD4-positive lymphocytes. PLoS One 8:e58445. doi:10.1371/journal.pone.0058445

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Ussher JR, Drucker DJ (2014) Cardiovascular actions of incretin-based therapies. Circ Res 114:1788–1803. doi:10.1161/CIRCRESAHA.114.301958

    CAS  PubMed  Google Scholar 

  26. Nuche-Berenguer B, Portal-Nunez S, Moreno P et al (2010) Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J Cell Physiol 225:585–592

    CAS  PubMed  Google Scholar 

  27. Seufert J, Gallwitz B (2014) A focus on the cardiovascular, gastrointestinal and central nervous systems. Diabetes Obes Metab 16(8):673–688. doi:10.1111/dom.12251

  28. Vilsboll T, Christensen M, Junker AE et al (2012) Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ (Clinical Res ed) 344:d7771. doi:10.1136/bmj.d7771

    Google Scholar 

  29. Van Bloemendaal L, Ten Kulve JS, la Fleur SE et al (2014) Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. J Endocrinol 221:T1–T16. doi:10.1530/JOE-13-0414

    PubMed  Google Scholar 

  30. Vahl TP, Tauchi M, Durler TS et al (2007) Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 148:4965–4973

    CAS  PubMed  Google Scholar 

  31. Abbott CR, Monteiro M, Small CJ et al (2005) The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res 1044:127–131. doi:10.1016/j.brainres.2005.03.011

    CAS  PubMed  Google Scholar 

  32. Fujiwara K, Gotoh K, Chiba S et al (2012) Intraportal administration of DPP-IV inhibitor regulates insulin secretion and food intake mediated by the hepatic vagal afferent nerve in rats. J Neurochem 121:66–76

    CAS  PubMed  Google Scholar 

  33. Hayes MR, Kanoski SE, De Jonghe BC et al (2011) The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1. Am J Physiol Regul Integr Comp Physiol 301:1479–1485

    Google Scholar 

  34. Kastin AJ, Akerstrom V, Pan W (2002) Interactions of glucagon-like peptide-1 (GLP-1) with the blood–brain barrier. J Mol Neurosci 18:7–14

    CAS  PubMed  Google Scholar 

  35. Hölscher C (2012) Potential role of glucagon-like peptide-1 (GLP-1) in neuroprotection. CNS Drugs 26:871–882. doi:10.2165/11635890-000000000-00000

    PubMed  Google Scholar 

  36. McClean PL, Parthsarathy V, Faivre E, Holscher C (2011) The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci 31:6587–6594

    CAS  PubMed  Google Scholar 

  37. McClean PL, Gault VA, Harriott P, Hölscher C (2010) Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer’s disease. Eur J Pharmacol 630:158–162. doi:10.1016/j.ejphar.2009.12.023

    CAS  PubMed  Google Scholar 

  38. Xiong H, Zheng C, Wang J et al (2013) The neuroprotection of liraglutide on Alzheimer-like learning and memory impairment by modulating the hyperphosphorylation of tau and neurofilament proteins and insulin signaling pathways in mice. J Alzheimers Dis 37:623–635

    PubMed  Google Scholar 

  39. Yang Y, Zhang J, Ma D et al (2013) Subcutaneous administration of liraglutide ameliorates Alzheimer-associated tau hyperphosphorylation in rats with type 2 diabetes. J Alzheimers Dis 37:637–648

    PubMed  Google Scholar 

  40. Bertilsson G, Patrone C, Zachrisson O et al (2008) Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J Neurosci Res 86:326–338

    CAS  PubMed  Google Scholar 

  41. Li Y, Perry T, Kindy MS et al (2009) GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci USA 106:1285–1290. doi:10.1073/pnas.0806720106

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Harkavyi A, Abuirmeileh A, Lever R et al (2008) Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflamm 5:19

    Google Scholar 

  43. Aviles-Olmos I, Dickson J, Kefalopoulou Z et al (2013) Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest 123:2730–2736

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Li Y, Chigurupati S, Holloway HW et al (2012) Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis. PLoS One 7(2):e32008. doi:10.1371/journal.pone.0032008

  45. Knippenberg S, Thau N, Dengler R et al (2012) Intracerebroventricular injection of encapsulated human mesenchymal cells producing glucagon-like peptide 1 prolongs survival in a mouse model of ALS. PLoS One 7

  46. Sun H, Knippenberg S, Thau N et al (2013) Therapeutic potential of N-acetyl-glucagon-like peptide-1 in primary motor neuron cultures derived from non-transgenic and SOD1-G93A ALS mice. Cell Mol Neurobiol 33:347–357

    CAS  PubMed  Google Scholar 

  47. Lee CH, Yan B, Yoo K-Y et al (2011) Ischemia-induced changes in glucagon-like peptide-1 receptor and neuroprotective effect of its agonist, exendin-4, in experimental transient cerebral ischemia. J Neurosci Res 89:1103–1113

    CAS  PubMed  Google Scholar 

  48. Teramoto S, Miyamoto N, Yatomi K et al (2011) Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J Cereb Blood Flow Metab 31:1696–1705

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Wang M-D, Huang Y, Zhang G-P et al (2012) Exendin-4 improved rat cortical neuron survival under oxygen/glucose deprivation through PKA pathway. Neuroscience 226:388–396

    CAS  PubMed  Google Scholar 

  50. Monami M, Marchionni N, Mannucci E (2009) Glucagon-like peptide-1 receptor agonists in type 2 diabetes: a meta-analysis of randomized clinical trials. Eur J Endocrinol 160:909–917. doi:10.1530/EJE-09-0101

    CAS  PubMed  Google Scholar 

  51. Monami M, Dicembrini I, Marchionni N et al (2012) Effects of glucagon-like peptide-1 receptor agonists on body weight: a meta-analysis. Exp Diabetes Res 2012:672658. doi:10.1155/2012/672658

    PubMed Central  PubMed  Google Scholar 

  52. Jendle J, Nauck MA, Matthews DR et al (2009) Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab 11:1163–1172. doi:10.1111/j.1463-1326.2009.01158.x

    CAS  PubMed  Google Scholar 

  53. Jensterle Sever M, Kocjan T, Pfeifer M et al (2014) Short-term combined treatment with liraglutide and metformin leads to significant weight loss in obese women with polycystic ovary syndrome and previous poor response to metformin. Eur J Endocrinol 170:451–459. doi:10.1530/EJE-13-0797

    PubMed Central  PubMed  Google Scholar 

  54. Li C, Li J, Zhang Q et al (2012) Efficacy and safety comparison between liraglutide as add-on therapy to insulin and insulin dose-increase in Chinese subjects with poorly controlled type 2 diabetes and abdominal obesity. Cardiovasc Diabetol 11:142. doi:10.1186/1475-2840-11-142

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Inoue K, Maeda N, Kashine S et al (2011) Short-term effects of liraglutide on visceral fat adiposity, appetite, and food preference: a pilot study of obese Japanese patients with type 2 diabetes. Cardiovasc Diabetol 10:109. doi:10.1186/1475-2840-10-109

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Dushay J, Gao C, Gopalakrishnan GS et al (2012) Short-term exenatide treatment leads to significant weight loss in a subset of obese women without diabetes. Diabetes Care 35:4–11. doi:10.2337/dc11-0931

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Osaka T, Endo M, Yamakawa M, Inoue S (2005) Energy expenditure by intravenous administration of glucagon-like peptide-1 mediated by the lower brainstem and sympathoadrenal system. Peptides 26:1623–1631. doi:10.1016/j.peptides.2005.02.016

    CAS  PubMed  Google Scholar 

  58. Lockie SH, Heppner KM, Chaudhary N et al (2012) Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes 61:2753–2762. doi:10.2337/db11-1556

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Horowitz M, Flint A, Jones KL et al (2012) Effect of the once-daily human GLP-1 analogue liraglutide on appetite, energy intake, energy expenditure and gastric emptying in type 2 diabetes. Diabetes Res Clin Pract 97:258–266. doi:10.1016/j.diabres.2012.02.016

    CAS  PubMed  Google Scholar 

  60. Harder H, Nielsen L, Thi TDT, Astrup A (2004) The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes. Diabetes Care 27:1915–1921. doi:10.2337/diacare.27.8.1915

    CAS  PubMed  Google Scholar 

  61. Bradley DP, Kulstad R, Racine N et al (2012) Alterations in energy balance following exenatide administration. Appl Physiol Nutr Metab 37:893–899. doi:10.1139/h2012-068

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Göke R, Larsen PJ, Mikkelsen JD, Sheikh SP (1995) Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci 7:2294–2300

    PubMed  Google Scholar 

  63. Flint A, Raben A, Astrup A, Holst JJ (1998) Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 101:515–520

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Giorgino F, Leonardini A, Natalicchio A, Laviola L (2011) Multifactorial intervention in type 2 diabetes: the promise of incretin-based therapies. J Endocrinol Invest 34:69–77. doi:10.3275/7444

    CAS  PubMed  Google Scholar 

  65. Raun K, von Voss P, Knudsen LB (2007) Liraglutide, a once-daily human glucagon-like peptide-1 analog, minimizes food intake in severely obese minipigs. Obes (Silver Spring) 15:1710–1716

    CAS  Google Scholar 

  66. Raun K, von Voss P, Gotfredsen CF et al (2007) Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not. Diabetes 56:8–15

    CAS  PubMed  Google Scholar 

  67. Kinzig KP, D’Alessio DA, Seeley RJ (2002) The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J Neurosci 22:10470–10476

    CAS  PubMed  Google Scholar 

  68. Tang-Christensen M, Larsen PJ, Göke R et al (1996) Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol 271:R848–R856

    CAS  PubMed  Google Scholar 

  69. Toft-Nielsen MB, Madsbad S, Holst JJ (1999) Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care 22:1137–1143

    CAS  PubMed  Google Scholar 

  70. Gutzwiller JP, Drewe J, Goke B et al (1999) Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 276:1541–1544

    Google Scholar 

  71. Verdich C, Flint A, Gutzwiller JP et al (2001) A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 86:4382–4389. doi:10.1210/jcem.86.9.7877

    CAS  PubMed  Google Scholar 

  72. Edwards CM, Stanley SA, Davis R et al (2001) Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am J Physiol Endocrinol Metab 281:E155–E161

    CAS  PubMed  Google Scholar 

  73. Rüttimann EB, Arnold M, Hillebrand JJ et al (2009) Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 150:1174–1181. doi:10.1210/en.2008-1221

    PubMed Central  PubMed  Google Scholar 

  74. Schirra J, Göke B (2005) The physiological role of GLP-1 in human: incretin, ileal brake or more? Regul Pept 128:109–115. doi:10.1016/j.regpep.2004.06.018

    CAS  PubMed  Google Scholar 

  75. Andrews CN, Bharucha AE, Camilleri M et al (2007) Effects of glucagon-like peptide-1 and sympathetic stimulation on gastric accommodation in humans. Neurogastroenterol Motil 19:716–723. doi:10.1111/j.1365-2982.2007.00923.x

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Schirra J (2002) Effects of glucagon-like peptide-1(7-36) amide on motility and sensation of the proximal stomach in humans. Gut 50:341–348. doi:10.1136/gut.50.3.341

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Young AA, Gedulin BR, Rink TJ (1996) Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7-36) NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism 45:1–3

    CAS  PubMed  Google Scholar 

  78. Umapathysivam MM, Lee MY, Jones KL et al (2014) Comparative effects of prolonged and intermittent stimulation of the glucagon-like peptide 1 receptor on gastric emptying and glycemia. Diabetes 63:785–790. doi:10.2337/db13-0893

    CAS  PubMed  Google Scholar 

  79. Rotondo A, Janssen P, Mulè F, Tack J (2013) Effect of the GLP-1 analog liraglutide on satiation and gastric sensorimotor function during nutrient-drink ingestion. Int J Obes (Lond) 37:693–698. doi:10.1038/ijo.2012.101

    CAS  Google Scholar 

  80. Madsbad S (2009) Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)–preclinical and clinical results. Best Pract Res Clin Endocrinol Metab 23:463–477. doi:10.1016/j.beem.2009.03.008

    CAS  PubMed  Google Scholar 

  81. Van Can J, Sloth B, Jensen CB et al (2013) Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes (Lond). doi:10.1038/ijo.2013.162

  82. Janssen P, Vanden Berghe P, Verschueren S et al (2011) Review article: the role of gastric motility in the control of food intake. Aliment Pharmacol Ther 33:880–894. doi:10.1111/j.1365-2036.2011.04609.x

    CAS  PubMed  Google Scholar 

  83. YK, Shin, Martin B, Golden E, Dotson CD, Maudsley S, Kim W, Jang HJ, Mattson MP, Drucker DJ, Egan JM MS, Shin Y-K, Martin B et al (2008) Modulation of taste sensitivity by GLP-1 signaling. J Neurochem 106:455–63. doi:10.1111/j.1471-4159.2008.05397.x

  84. Merida E, Delgado E, Molina LM et al (1993) Presence of glucagon and glucagon-like peptide-1-(7-36) amide receptors in solubilized membranes of human adipose tissue. J Clin Endocrinol Metab 77:1654–1657

    CAS  PubMed  Google Scholar 

  85. Le Kim Chung T, Hosaka T, Yoshida M et al (2009) Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression. Biochem Biophys Res Commun 390:613–618. doi:10.1016/j.bbrc.2009.10.015

    Google Scholar 

  86. Perea A, Vinambres C, Clemente F et al (1997) GLP-1 (7-36) amide: effects on glucose transport and metabolism in rat adipose tissue. Horm Metab Res 29:417–421. doi:10.1055/s-2007-979068

    CAS  PubMed  Google Scholar 

  87. Ruiz-Grande C, Alarcon C, Merida E, Valverde I (1992) Lipolytic action of glucagon-like peptides in isolated rat adipocytes. Peptides 13:13–16

    CAS  PubMed  Google Scholar 

  88. Sancho V, Trigo MV, Gonzalez N et al (2005) Effects of glucagon-like peptide-1 and exendins on kinase activity, glucose transport and lipid metabolism in adipocytes from normal and type-2 diabetic rats. J Mol Endocrinol 35:27–38. doi:10.1677/jme.1.01747

    CAS  PubMed  Google Scholar 

  89. Vendrell J, El Bekay R, Peral B et al (2011) Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance. Endocrinology 152:4072–4079. doi:10.1210/en.2011-1070

    CAS  PubMed  Google Scholar 

  90. Villanueva-Penacarrillo ML, Marquez L, Gonzalez N et al (2001) Effect of GLP-1 on lipid metabolism in human adipocytes. Horm Metab Res 33:73–77

    CAS  PubMed  Google Scholar 

  91. Zhao TC (2013) Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection. Cardiovasc Diabetol 12:90. doi:10.1186/1475-2840-12-90

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Monami M, Dicembrini I, Nardini C et al (2014) Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 16:38–47. doi:10.1111/dom.12175

    CAS  PubMed  Google Scholar 

  93. Wei Y, Mojsov S (1995) Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett 358:219–224

    CAS  PubMed  Google Scholar 

  94. Vila Petroff MG, Egan JM, Wang X, Sollott SJ (2001) Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res 89:445–452

    CAS  PubMed  Google Scholar 

  95. Barragan JM, Rodriguez RE, Eng J, Blazquez E (1996) Interactions of exendin-(9-39) with the effects of glucagon-like peptide-1-(7-36) amide and of exendin-4 on arterial blood pressure and heart rate in rats. Regul Pept 67:63–68

    CAS  PubMed  Google Scholar 

  96. Yamamoto H, Lee CE, Marcus JN et al (2002) Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest 110:43–52

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Nikolaidis LA, Elahi D, Shen Y-T, Shannon RP (2005) Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 289:2401–2408

    Google Scholar 

  98. Zhao T, Parikh P, Bhashyam S et al (2006) Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther 317:1106–1113

    CAS  PubMed  Google Scholar 

  99. Laviola L, Leonardini A, Melchiorre M et al (2012) Glucagon-like peptide-1 counteracts oxidative stress-dependent apoptosis of human cardiac progenitor cells by inhibiting the activation of the c-Jun N-terminal protein kinase signaling pathway. Endocrinology 153:5770–5781. doi:10.1210/en.2012-1461

    CAS  PubMed  Google Scholar 

  100. Yu M, Moreno C, Hoagland KM et al (2003) Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens 21:1125–1135

    CAS  PubMed  Google Scholar 

  101. Pacheco BP, Crajoinas RO, Couto GK et al (2011) Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats. J Hypertens 29:520–528

    CAS  PubMed  Google Scholar 

  102. Gaspari T, Liu H, Welungoda I et al (2011) A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE−/− mouse model. Diab Vasc Dis Res 8:117–124. doi:10.1177/1479164111404257

    PubMed  Google Scholar 

  103. Han L, Yu Y, Sun X, Wang B (2012) Exendin-4 directly improves endothelial dysfunction in isolated aortas from obese rats through the cAMP or AMPK-eNOS pathways. Diabetes Res Clin Pract 97:453–460. doi:10.1016/j.diabres.2012.04.001

    CAS  PubMed  Google Scholar 

  104. Tashiro Y, Sato K, Watanabe T et al (2014) A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides 54C:19–26

    Google Scholar 

  105. Sokos GG, Nikolaidis LA, Mankad S et al (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12:694–699

    CAS  PubMed  Google Scholar 

  106. Sokos GG, Bolukoglu H, German J et al (2007) Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol 100:824–829. doi:10.1016/j.amjcard.2007.05.022

    CAS  PubMed  Google Scholar 

  107. Read PA, Hoole SP, White PA et al (2011) A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ Cardiovasc Interv 4:266–272. doi:10.1161/CIRCINTERVENTIONS.110.960476

    CAS  PubMed  Google Scholar 

  108. Read PA, Khan FZ, Dutka DP (2012) Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart 98:408–413. doi:10.1136/hrt.2010.219345

    CAS  PubMed  Google Scholar 

  109. Gejl M, Lerche S, Mengel A et al (2014) Influence of GLP-1 on myocardial glucose metabolism in healthy men during normo- or hypoglycemia. PLoS One 9(1):e83758. doi:10.1371/journal.pone.0083758

  110. Fonseca VDJH, Bain SC (2011) Liraglutide improves the profile of lipid and cardiovascular risk biomarkers from baseline. In: IDF 2011 21th World Congress Abstract Book Poster vol 135, pp 442–443

  111. Lonborg J, Vejlstrup N, Kelbæk H et al (2012) Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J 33:1491–1499

    CAS  PubMed  Google Scholar 

  112. Kelly AS, Bergenstal RM, Gonzalez-Campoy JM et al (2012) Effects of exenatide vs. metformin on endothelial function in obese patients with pre-diabetes: a randomized trial. Cardiovasc Diabetol 11:64

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Monami M, Dicembrini I, Mannucci E (2014) Dipeptidyl peptidase-4 inhibitors and heart failure: a meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis 24(7):689–697. doi:10.1016/j.numecd.2014.01.017

  114. Wu S, Hopper I, Skiba M, Krum H (2014) Dipeptidyl peptidase-4 inhibitors and cardiovascular outcomes: meta-analysis of randomized clinical trials with 55,141 participants. Cardiovasc Ther 32(4):147–158. doi:10.1111/1755-5922.12075

  115. Clowes JA, Hannon RA, Yap TS et al (2002) Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 30:886–890

    CAS  PubMed  Google Scholar 

  116. Schlemmer A, Hassager C (1999) Acute fasting diminishes the circadian rhythm of biochemical markers of bone resorption. Eur J Endocrinol 140:332–337

    CAS  PubMed  Google Scholar 

  117. Nuche-Berenguer B, Moreno P, Esbrit P et al (2009) Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int 84:453–461

    CAS  PubMed  Google Scholar 

  118. Mabilleau G, Mieczkowska A, Irwin N et al (2013) Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. J Endocrinol 219:59–68

    CAS  PubMed  Google Scholar 

  119. Davidovici BB, Sattar N, Prinz JC et al (2010) Psoriasis and systemic inflammatory diseases: potential mechanistic links between skin disease and co-morbid conditions. J Invest Dermatol 130:1785–1796. doi:10.1038/jid.2010.103

    CAS  PubMed  Google Scholar 

  120. Buysschaert M, Tennstedt D, Preumont V (2012) Improvement of psoriasis during exenatide treatment in a patient with diabetes. Diabetes Metab 38:86–88

    CAS  PubMed  Google Scholar 

  121. Faurschou A, Knop FK, Thyssen JP et al (2014) Improvement in psoriasis after treatment with the glucagon-like peptide-1 receptor agonist liraglutide. Acta Diabetol 51:147–150. doi:10.1007/s00592-011-0359-9

    CAS  PubMed  Google Scholar 

  122. Ahern T, Tobin A-M, Corrigan M et al (2013) Glucagon-like peptide-1 analogue therapy for psoriasis patients with obesity and type 2 diabetes: a prospective cohort study. J Eur Acad Dermatol Venereol 27(11):1440–1443. doi:10.1111/j.1468-3083.2012.04609.x

    CAS  PubMed  Google Scholar 

  123. Faurschou A, Pedersen J, Gyldenløve M et al (2013) Increased expression of glucagon-like peptide-1 receptors in psoriasis plaques. Exp Dermatol 22:150–152. doi:10.1111/exd.12081

    CAS  PubMed  Google Scholar 

  124. Buysschaert M, Baeck M, Preumont V et al (2014) Improvement of psoriasis during GLP-1 analogue therapy in type 2 diabetes is associated with decreasing dermal γδ T cells number: a prospective case series study. Br J Dermatol. doi:10.1111/bjd.12886

Download references

Acknowledgments

This review was conceived in the context of the activity of Engioi Club (Italian Society of Endocrinology-SIE). The Authors wish to thank Italian Society of Endocrinology (SIE), Prof Alessandro Peri and Prof Luigi Bartalena for supporting the initiative.

Conflict of interest

All authors have no potential conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Muscogiuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muscogiuri, G., Cignarelli, A., Giorgino, F. et al. GLP-1: benefits beyond pancreas. J Endocrinol Invest 37, 1143–1153 (2014). https://doi.org/10.1007/s40618-014-0137-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0137-y

Keywords

Navigation