Skip to main content
Log in

Effects of cocaine on the hypothalamic–pituitary–adrenal axis

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Introduction

Cocaine hydrochloride is a psychoactive substance extracted from the leaves of plants called Erythroxylum coca. Cocaine is the second most commonly used drug in the world after cannabis; 20 % of cocaine users will become long-term cocaine-dependent patients. Different routes of administration may be recognized: smokable modality, intranasal and intravenous. Cocaine is a potent stimulant of the sympathetic nervous system and causes structural changes on the brain, heart, lung, liver and kidney. It has long been known that use of cocaine may produce alterations to the endocrine system. Research on behavioral and neuroendocrine effects of cocaine dates back several years ago and has increasingly focused on alterations of the hypothalamic–pituitary–adrenal (HPA) axis, which appears to be the chief target of cocaine effects.

Studies

Animal (mainly rats and monkeys) and human studies have clearly shown a close relation between cocaine consumption and overdrive of the HPA axis. Such activation is likely involved, though via a still undefined mechanism, in the behavioral and cardiovascular changes of drug abusers as well as in the reinforcement/relapse phenomena. Further studies of the pathophysiology of cocaine addicts will help to devise new therapeutic strategies for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2012). Trend report for the evaluation of the 2005–12 EU drugs strategy. EMCDDA, Lisbon

  2. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2013). European Drug Report 2013: Trends and developments. EMCDDA

  3. Cone EJ (1995) Pharmacokinetics and pharmacodynamics of cocaine. J Anal Toxicol 19:459–478

    Article  CAS  PubMed  Google Scholar 

  4. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2013). Perspective on drugs: Emergency health consequences of cocaine use in Europe

  5. Piazza PV, Le Moal M (1998) The role of stress in drug self-administration. Trends Pharmacol Sci 19:67–74

    Article  CAS  PubMed  Google Scholar 

  6. Koob GF (1999) Stress, corticotropin-releasing factor, and drug addiction. Ann N Y Acad Sci 897:27–45

    Article  CAS  PubMed  Google Scholar 

  7. Goeders NE (2002) The HPA axis and cocaine reinforcement. Psychoneuroendocrinology 27:13–33

    Article  CAS  PubMed  Google Scholar 

  8. Johnson EO, Kamilaris TC, Calogero AE, Konstandi M, Chrousos GP (2013) Effects of short- and long-duration hypothyroidism on function of the rat hypothalamic-pituitary-adrenal axis. J Endocrinol Invest 36:104–110

    CAS  PubMed  Google Scholar 

  9. Moldow RL, Fischman AJ (1987) Cocaine induced secretion of ACTH, beta-endorphin, and corticosterone. Peptides 8:819–822

    Article  CAS  PubMed  Google Scholar 

  10. Rivier C, Vale W (1987) Cocaine stimulates adrenocorticotropin (ACTH) secretion through a corticotropin-releasing factor (CRF)-mediated mechanism. Brain Res 422:403–406

    Article  CAS  PubMed  Google Scholar 

  11. Borowsky B, Kuhn CM (1991) Monoamine mediation of cocaine-induced hypothalamo-pituitary-adrenal activation. J Pharmacol Exp Ther 256:204–210

    CAS  PubMed  Google Scholar 

  12. Levy AD, Li QA, Kerr JE et al (1991) Cocaine-induced elevation of plasma adrenocorticotropin hormone and corticosterone is mediated by serotonergic neurons. J Pharmacol Exp Ther 259:495–500

    CAS  PubMed  Google Scholar 

  13. Sarnyai Z, Biro E, Penke B, Telegdy G (1992) The cocaine-induced elevation of plasma corticosterone is mediated by endogenous corticotropin-releasing factor (CRF) in rats. Brain Res 589:154–156

    Article  CAS  PubMed  Google Scholar 

  14. Sarnyai Z, Biro E, Telegdy G (1993) Cocaine-induced elevation of plasma corticosterone is mediated by different neurotransmitter systems in rats. Pharmacol Biochem Behav 45:209–214

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt ED, Tilders FJ, Janszen AW, Binnekade R, De Vries TJ, Schoffelmeer AN (1995) Intermittent cocaine exposure causes delayed and long-lasting sensitization of cocaine-induced ACTH secretion in rats. Eur J Pharmacol 285:317–321

    Article  CAS  PubMed  Google Scholar 

  16. Koob G, Kreek MJ (2007) Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 164:1149–1159

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sarnyai Z, Vecsernyes M, Laczi F, Biro E, Szabo G, Kovacs GL (1992) Effects of cocaine on the contents of neurohypophyseal hormones in the plasma and in different brain structures in rats. Neuropeptides 23:27–31

    Article  CAS  PubMed  Google Scholar 

  18. Rivier C, Lee S (1994) Stimulatory effect of cocaine on ACTH secretion: role of the hypothalamus. Mol Cell Neurosci 5:189–195

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Litvin Y, Piras AP, Pfaff DW, Kreek MJ (2011) Persistent increase in hypothalamic arginine vasopressin gene expression during protracted withdrawal from chronic escalating-dose cocaine in rodents. Neuropsychopharmacology 36:2062–2075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Calogero AE, Gallucci WT, Kling MA, Chrousos GP, Gold PW (1989) Cocaine stimulates rat hypothalamic corticotropin-releasing hormone secretion in vitro. Brain Res 505:7–11

    Article  CAS  PubMed  Google Scholar 

  21. Ago Y, Nakamura S, Baba A, Matsuda T (2008) Neuropsychotoxicity of abused drugs: effects of serotonin receptor ligands on methamphetamine and cocaine-induced behavioral sensitization in mice. J Pharmacol Sci 106:15–21

    Article  CAS  PubMed  Google Scholar 

  22. Goeders NE (1997) A neuroendocrine role in cocaine reinforcement. Psychoneuroendocrinology 22:237–259

    Article  CAS  PubMed  Google Scholar 

  23. Goeders NE (2002) Stress and cocaine addiction. J Pharmacol Exp Ther 301:785–789

    Article  CAS  PubMed  Google Scholar 

  24. Haleem DJ, Kennett G, Curzon G (1988) Adaptation of female rats to stress: shift to male pattern by inhibition of corticosterone synthesis. Brain Res 458:339–347

    Article  CAS  PubMed  Google Scholar 

  25. Goeders NE, Guerin GF (1996) Effects of surgical and pharmacological adrenalectomy on the initiation and maintenance of intravenous cocaine self-administration in rats. Brain Res 722:145–152

    Article  CAS  PubMed  Google Scholar 

  26. Iranmanesh A, Lizarralde G, Short D, Veldhuis JD (1990) Intensive venous sampling paradigms disclose high frequency adrenocorticotropin release episodes in normal men. J Clin Endocrinol Metab 71:1276–1283

    Article  CAS  PubMed  Google Scholar 

  27. Carnes M, Kalin NH, Lent SJ, Barksdale CM, Brownfield MS (1988) Pulsatile ACTH secretion: variation with time of day and relationship to cortisol. Peptides 9:325–331

    Article  CAS  PubMed  Google Scholar 

  28. Sarnyai Z, Mello NK, Mendelson JH, Nguyen PH, Eros-Sarnyai M (1995) Effects of cocaine and corticotropin-releasing factor on pulsatile ACTH and cortisol release in ovariectomized rhesus monkeys. J Clin Endocrinol Metab 80:2745–2751

    CAS  PubMed  Google Scholar 

  29. Sarnyai Z, Veldhuis JD, Mello NK et al (1995) The concordance of pulsatile ultradian release of adrenocorticotropin and cortisol in male rhesus monkeys. J Clin Endocrinol Metab 80:54–59

    CAS  PubMed  Google Scholar 

  30. Carnes M, Lent SJ, Goodman B, Mueller C, Saydoff J, Erisman S (1990) Effects of immunoneutralization of corticotropin-releasing hormone on ultradian rhythms of plasma adrenocorticotropin. Endocrinology 126:1904–1913

    Article  CAS  PubMed  Google Scholar 

  31. Sarnyai Z, Mello NK, Mendelson JH, Eros-Sarnyai M, Mercer G (1996) Effects of cocaine on pulsatile activity of hypothalamic-pituitary-adrenal axis in male rhesus monkeys: neuroendocrine and behavioral correlates. J Pharmacol Exp Ther 277:225–234

    CAS  PubMed  Google Scholar 

  32. Post RM, Kopanda RT, Black KE (1976) Progressive effects of cocaine on behavior and central amine metabolism in rhesus monkeys: relationship to kindling and psychosis. Biol Psychiatry 11:403–419

    CAS  PubMed  Google Scholar 

  33. Gawin FH, Kleber HD (1985) Neuroendocrine findings in a chronic cocaine abusers: a preliminary report. Br J Psychiatry 147:569–573

    Article  CAS  PubMed  Google Scholar 

  34. Vescovi PP, Coiro V, Volpi R, Passeri M (1992) Diurnal variations in plasma ACTH, cortisol and beta-endorphin levels in cocaine addicts. Horm Res 37:221–224

    Article  CAS  PubMed  Google Scholar 

  35. Vescovi PP, Coiro V, Volpi R, Giannini A, Passeri M (1992) Hyperthermia in sauna is unable to increase the plasma levels of ACTH/cortisol, beta-endorphin and prolactin in cocaine addicts. J Endocrinol Invest 15:671–675

    Article  CAS  PubMed  Google Scholar 

  36. Mendelson JH, Teoh SK, Mello NK, Ellingboe J, Rhoades E (1992) Acute effects of cocaine on plasma adrenocorticotropic hormone, luteinizing hormone and prolactin levels in cocaine-dependent men. J Pharmacol Exp Ther 263:505–509

    CAS  PubMed  Google Scholar 

  37. Teoh SK, Sarnyai Z, Mendelson JH et al (1994) Cocaine effects on pulsatile secretion of ACTH in men. J Pharmacol Exp Ther 270:1134–1138

    CAS  PubMed  Google Scholar 

  38. Negro-Vilar A, Johnston C, Spinedi E, Valenca MM, Lopez F (1987) Physiological role of peptides and amines on the regulation of ACTH secretion. Ann NY Acad Sci 512:219–237

    Article  Google Scholar 

  39. Gambacciani M, Liu JH, Swartz WH, Tueros VS, Rasmussen DD, Yen SS (1987) Intrinsic pulsatility of ACTH release from the human pituitary in vitro. Clin Endocrinol (Oxf) 26:557–563

    Article  CAS  Google Scholar 

  40. Sholar MB, Mendelson JH, Mello NK et al (1998) Concurrent pharmacokinetic analysis of plasma cocaine and adrenocorticotropic hormone in men. J Clin Endocrinol Metab 83:966–968

    CAS  PubMed  Google Scholar 

  41. Baumann MH, Gendron TM, Becketts KM, Henningfield JE, Gorelick DA, Rothman RB (1995) Effects of intravenous cocaine on plasma cortisol and prolactin in human cocaine abusers. Biol Psychiatry 38:751–755

    Article  CAS  PubMed  Google Scholar 

  42. Elman I, Breiter HC, Gollub RL et al (1999) Depressive symptomatology and cocaine-induced pituitary-adrenal axis activation in individuals with cocaine dependence. Drug Alcohol Depend 56:39–45

    Article  CAS  PubMed  Google Scholar 

  43. Mendelson JH, Mello NK, Sholar MB, Siegel AJ, Mutschler N, Halpern J (2002) Temporal concordance of cocaine effects on mood states and neuroendocrine hormones. Psychoneuroendocrinology 27:71–82

    Article  CAS  PubMed  Google Scholar 

  44. Phillips K, Luk A, Soor GS, Abraham JR, Leong S, Butany J (2009) Cocaine cardiotoxicity: a review of the pathophysiology, pathology, and treatment options. Am J Cardiovasc Drugs 9:177–196

    Article  CAS  PubMed  Google Scholar 

  45. Jacobsen TN, Grayburn PA, Snyder RW et al (1997) Effects of intranasal cocaine on sympathetic nerve discharge in humans. J Clin Invest 99:628–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Vongpatanasin W, Mansour Y, Chavoshan B, Arbique D, Victor RG (1999) Cocaine stimulates the human cardiovascular system via a central mechanism of action. Circulation 100:497–502

    Article  CAS  PubMed  Google Scholar 

  47. Mittleman MA, Mintzer D, Maclure M, Tofler GH, Sherwood JB, Muller JE (1999) Triggering of myocardial infarction by cocaine. Circulation 99:2737–2741

    Article  CAS  PubMed  Google Scholar 

  48. Silaghi A, Silaghi H, Scridon T, Pais R, Achard V (2012) Glucocorticoid receptors in human epicardial adipose tissue: role of coronary status. J Endocrinol Invest 35:649–654

    CAS  PubMed  Google Scholar 

  49. Heesch CM, Wilhelm CR, Ristich J, Adnane J, Bontempo FA, Wagner WR (2000) Cocaine activates platelets and increases the formation of circulating platelet containing microaggregates in humans. Heart 83:688–695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Siegel AJ, Mendelson JH, Sholar MB et al (2002) Effect of cocaine usage on C-reactive protein, von Willebrand factor, and fibrinogen. Am J Cardiol 89:1133–1135

    Article  CAS  PubMed  Google Scholar 

  51. Steffel J, Iseli S, Arnet C, Luscher TF, Tanner FC (2006) Cocaine unbalances endothelial tissue factor and tissue factor pathway inhibitor expression. J Mol Cell Cardiol 40:746–749

    Article  CAS  PubMed  Google Scholar 

  52. O’Leary ME, Hancox JC (2010) Role of voltage-gated sodium, potassium and calcium channels in the development of cocaine-associated cardiac arrhythmias. Br J Clin Pharmacol 69:427–442

    Article  PubMed Central  PubMed  Google Scholar 

  53. Ambre JJ, Belknap SM, Nelson J, Ruo TI, Shin SG, Atkinson AJ Jr (1988) Acute tolerance to cocaine in humans. Clin Pharmacol Ther 44:1–8

    Article  CAS  PubMed  Google Scholar 

  54. Foltin RW, Haney M (2004) Intranasal cocaine in humans: acute tolerance, cardiovascular and subjective effects. Pharmacol Biochem Behav 78:93–101

    Article  CAS  PubMed  Google Scholar 

  55. Mendelson JH, Sholar M, Mello NK, Teoh SK, Sholar JW (1998) Cocaine tolerance: behavioral, cardiovascular, and neuroendocrine function in men. Neuropsychopharmacology 18:263–271

    Article  CAS  PubMed  Google Scholar 

  56. Elman I, Lukas SE, Karlsgodt KH, Gasic GP, Breiter HC (2003) Acute cortisol administration triggers craving in individuals with cocaine dependence. Psychopharmacol Bull 37:84–89

    PubMed  Google Scholar 

  57. Sinha R, Talih M, Malison R, Cooney N, Anderson GM, Kreek MJ (2003) Hypothalamic-pituitary-adrenal axis and sympatho-adreno-medullary responses during stress-induced and drug cue-induced cocaine craving states. Psychopharmacology 170:62–72

    Article  CAS  PubMed  Google Scholar 

  58. Ward AS, Collins ED, Haney M, Foltin RW, Fischman MW (1998) Ketoconazole attenuates the cortisol response but not the subjective effects of smoked cocaine in humans. Behav Pharmacol 9:577–586

    Article  CAS  PubMed  Google Scholar 

  59. Ward AS, Collins ED, Haney M, Foltin RW, Fischman MW (1999) Blockade of cocaine-induced increases in adrenocorticotrophic hormone and cortisol does not attenuate the subjective effects of smoked cocaine in humans. Behav Pharmacol 10:523–529

    Article  CAS  PubMed  Google Scholar 

  60. Quinones-Jenab V (2006) Why are women from Venus and men from Mars when they abuse cocaine? Brain Res 1126:200–203

    Article  CAS  PubMed  Google Scholar 

  61. Najavits LM, Lester KM (2008) Gender differences in cocaine dependence. Drug Alcohol Depend 97:190–194

    Article  PubMed Central  PubMed  Google Scholar 

  62. Evans SM, Foltin RW (2010) Does the response to cocaine differ as a function of sex or hormonal status in human and non-human primates? Horm Behav 2010(58):13–21

    Article  Google Scholar 

  63. Mendelson JH, Mello NK, Sholar MB et al (1999) Cocaine pharmacokinetics in men and in women during the follicular and luteal phases of the menstrual cycle. Neuropsychopharmacology 21:294–303

    Article  CAS  PubMed  Google Scholar 

  64. Halpern JH, Sholar MB, Glowacki J, Mello NK, Mendelson JH, Siegel AJ (2003) Diminished interleukin-6 response to proinflammatory challenge in men and women after intravenous cocaine administration. J Clin Endocrinol Metab 88:1188–1193

    Article  CAS  PubMed  Google Scholar 

  65. Fox HC, Garcia M Jr, Kemp K, Milivojevic V, Kreek MJ, Sinha R (2006) Gender differences in cardiovascular and corticoadrenal response to stress and drug cues in cocaine dependent individuals. Psychopharmacology 185:348–357

    Article  CAS  PubMed  Google Scholar 

  66. Waldrop AE, Price KL, Desantis SM et al (2010) Community-dwelling cocaine-dependent men and women respond differently to social stressors versus cocaine cues. Psychoneuroendocrinology 35:798–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Jacobsen LK, Giedd JN, Kreek MJ, Gottschalk C, Kosten TR (2001) Quantitative medial temporal lobe brain morphology and hypothalamic-pituitary-adrenal axis function in cocaine dependence: a preliminary report. Drug Alcohol Depend 62:49–56

    Article  CAS  PubMed  Google Scholar 

  68. Buydens-Branchey L, Branchey M, Hudson J, Dorota Majewska M (2002) Perturbations of plasma cortisol and DHEA-S following discontinuation of cocaine use in cocaine addicts. Psychoneuroendocrinology 27:83–97

    Article  CAS  PubMed  Google Scholar 

  69. Fox HC, Hong KA, Paliwal P, Morgan PT, Sinha R (2008) Altered levels of sex and stress steroid hormones assessed daily over a 28-day cycle in early abstinent cocaine-dependent females. Psychopharmacology 195:527–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Vescovi PP (2000) Cardiovascular and hormonal responses to hyperthermic stress in cocaine addicts after a long period of abstinence. Addict Biol 5:91–95

    Article  CAS  PubMed  Google Scholar 

  71. Starkman MN, Giordani B, Berent S, Schork MA, Schteingart DE (2001) Elevated cortisol levels in Cushing’s disease are associated with cognitive decrements. Psychosom Med 63:985–993

    Article  CAS  PubMed  Google Scholar 

  72. Michaud K, Forget H, Cohen H (2009) Chronic glucocorticoid hypersecretion in Cushing’s syndrome exacerbates cognitive aging. Brain Cogn 71:1–8

    Article  PubMed  Google Scholar 

  73. Starkman MN, Gebarski SS, Berent S, Schteingart DE (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32:756–765

    Article  CAS  PubMed  Google Scholar 

  74. Maheu FS, Mazzone L, Merke DP et al (2008) Altered amygdala and hippocampus function in adolescents with hypercortisolemia: a functional magnetic resonance imaging study of Cushing syndrome. Dev Psychopathol 20:1177–1189

    Article  PubMed Central  PubMed  Google Scholar 

  75. Resmini E, Santos A, Gomez-Anson B et al (2012) Verbal and visual memory performance and hippocampal volumes, measured by 3-Tesla magnetic resonance imaging, in patients with Cushing’s syndrome. J Clin Endocrinol Metab 97:663–671

    Article  CAS  PubMed  Google Scholar 

  76. Jovanovski D, Erb S, Zakzanis KK (2005) Neurocognitive deficits in cocaine users: a quantitative review of the evidence. J Clin Exp Neuropsychol 27:189–204

    Article  PubMed  Google Scholar 

  77. Di Sclafani V, Tolou-Shams M, Price LJ, Fein G (2002) Neuropsychological performance of individuals dependent on crack-cocaine, or crack-cocaine and alcohol, at 6 weeks and 6 months of abstinence. Drug Alcohol Depend 66:161–171

    Article  PubMed Central  PubMed  Google Scholar 

  78. Fox HC, Jackson ED, Sinha R (2009) Elevated cortisol and learning and memory deficits in cocaine dependent individuals: relationship to relapse outcomes. Psychoneuroendocrinology 34:1198–1207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Di Sclafani V, Truran DL, Bloomer C et al (1998) Abstinent chronic crack-cocaine and crackcocaine/alcohol abusers evidence normal hippocampal volumes on MRI despite persistent cognitive impairments. Addict Biol 3:261–270

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Manetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manetti, L., Cavagnini, F., Martino, E. et al. Effects of cocaine on the hypothalamic–pituitary–adrenal axis. J Endocrinol Invest 37, 701–708 (2014). https://doi.org/10.1007/s40618-014-0091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0091-8

Keywords

Navigation