Skip to main content
Log in

Role of protein kinase C β2 in relaxin-mediated inhibition of cardiac fibrosis

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Introduction

Relaxin is a pleiotropic hormone owing endogenous antifibrosis effect on numerous organs. We demonstrated relaxin’s inhibitive effect on cardiac fibrosis previously.

Objective

The aim of this study was to investigate the role of protein kinase C (PKC) β2 in relaxin’s action under high glucose conditions.

Methods and results

Cardiac fibroblasts (CFs) were isolated, exposed to high glucose and incubated with recombinant human relaxin (rhRLX). Western blot analysis revealed a relaxin-mediated decrease in total expression and translocation of PKCβ2, showing downregulation of PKCβ2 is involved in relaxin’s action. Blocking PKCβ2 pathway with ruboxistaurin accelerated rhRLX-mediated inhibition in both proliferation of CFs and deposition of collagen.

Conclusion

In conclusion, relaxin can inhibit high glucose-associated cardiac fibrosis partly through PKCβ2 pathway. Further work should be done to fully understand intracellular mechanisms of relaxin’s action to accelerate its clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun Y, Zhang JQ, Zhang J, Lamparter S (2000) Cardiac remodeling by fibrous tissue after infarction in rats. J Lab Clin Med 135:316–323

    Article  CAS  PubMed  Google Scholar 

  2. Ban C, Twigg S (2008) Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary. Vasc Health Risk Manag 4:575–596

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47:693–700

    Article  CAS  PubMed  Google Scholar 

  4. Liu JE, Palmieri V, Roman MJ, Bella JN, Fabsitz R, Howard BV, Welty TK, Lee ET, Devereux RB (2001) The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the strong heart study. J Am Coll Cardiol 37:1943–1949

    Article  CAS  PubMed  Google Scholar 

  5. Krum H, Shi H, Pitt B, McMurray J, Swedberg K, van Veldhuisen DJ, Vincent J, Pocock S, Zannad F (2013) Clinical benefit of eplerenone in patients with mild symptoms of systolic heart failure already receiving optimal best practice background drug therapy: analysis of the emphasis-HF study. Circ Heart Fail 6:711–718

    Article  CAS  PubMed  Google Scholar 

  6. Ivell R, Hunt N, Khan-Dawood F, Dawood MY (1989) Expression of the human relaxin gene in the corpus luteum of the menstrual cycle and in the prostate. Mol Cell Endocrinol 66:251–255

    Article  CAS  PubMed  Google Scholar 

  7. Bani D, Bigazzi M (2011) Relaxin as a cardiovascular drug: a promise kept. Curr Drug Saf 6:324–328

    Article  CAS  PubMed  Google Scholar 

  8. Tan YY, Wade JD, Tregear GW, Summers RJ (1999) Quantitative autoradiographic studies of relaxin binding in rat atria, uterus and cerebral cortex: characterization and effects of oestrogen treatment. Br J Pharmacol 127:91–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wang P, Li HW, Wang YP, Chen H, Zhang P (2009) Effects of recombinant human relaxin upon proliferation of cardiac fibroblast and synthesis of collagen under high glucose condition. J Endocrinol Invest 32:242–247

    Article  CAS  PubMed  Google Scholar 

  10. Samuel CS, Unemori EN, Mookerjee I, Bathgate RA, Layfield SL, Mak J, Tregear GW, Du XJ (2004) Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145:4125–4133

    Article  CAS  PubMed  Google Scholar 

  11. Samuel CS, Cendrawan S, Gao XM, Ming Z, Zhao C, Kiriazis H, Xu Q, Tregear GW, Bathgate RA, Du XJ (2011) Relaxin remodels fibrotic healing following myocardial infarction. Lab Invest 91:675–690

    Article  CAS  PubMed  Google Scholar 

  12. Samuel CS, Hewitson TD, Zhang Y, Kelly DJ (2008) Relaxin ameliorates fibrosis in experimental diabetic cardiomyopathy. Endocrinology 149:3286–3293

    Article  CAS  PubMed  Google Scholar 

  13. Alipour MR, Aliparasti MR, Keyhanmanesh R, Almasi S, Halimi M, Ansarin K, Feizi H (2011) Effect of ghrelin on protein kinase c-epsilon and protein kinase c-delta gene expression in the pulmonary arterial smooth muscles of chronic hypoxic rats. J Endocrinol Invest 34:e369–e373

    CAS  PubMed  Google Scholar 

  14. Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL, Mintze K, Pickard T, Roden R, Bristow MR, Sabbah HN, Mizrahi JL, Gromo G, King GL, Vlahos CJ (1999) Increased protein kinase c activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation 99:384–391

    Article  CAS  PubMed  Google Scholar 

  15. Aiello LP, Vignati L, Sheetz MJ, Zhi X, Girach A, Davis MD, Wolka AM, Shahri N, Milton RC (2011) Oral protein kinase c beta inhibition using ruboxistaurin: efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with diabetic retinopathy in the protein kinase c beta inhibitor-diabetic retinopathy study and the protein kinase C beta inhibitor-diabetic retinopathy study 2. Retina 31:2084–2094

    Article  CAS  PubMed  Google Scholar 

  16. Ikeda A, Matsushita S, Sakakibara Y (2012) Inhibition of protein kinase c beta ameliorates impaired angiogenesis in type I diabetic mice complicating myocardial infarction. Circ J 76:943–949

    Article  CAS  PubMed  Google Scholar 

  17. Curtis TM, Scholfield CN (2004) The role of lipids and protein kinase cs in the pathogenesis of diabetic retinopathy. Diabetes Metab Res Rev 20:28–43

    Article  CAS  PubMed  Google Scholar 

  18. Lei S, Li H, Xu J, Liu Y, Gao X, Wang J, Ng KF, Lau WB, Ma XL, Rodrigues B, Irwin MG, Xia Z (2013) Hyperglycemia-induced protein kinase c beta2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing Caveolin-3 expression and Akt/eNOS signaling. Diabetes 62:2318–2328

    Article  CAS  PubMed  Google Scholar 

  19. Ahmad N, Wang W, Nair R, Kapila S (2012) Relaxin induces matrix-metalloproteinases-9 and -13 via RXFP1: induction of MMP-9 involves the PI3K, ERK, Akt and PKC-zeta pathways. Mol Cell Endocrinol 363:46–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sherwood OD, Crnekovic VE, Gordon WL, Rutherford JE (1980) Radioimmunoassay of relaxin throughout pregnancy and during parturition in the rat. Endocrinology 107:691–698

    Article  CAS  PubMed  Google Scholar 

  21. Nistri S, Pini A, Sassoli C, Squecco R, Francini F, Formigli L, Bani D (2012) Relaxin promotes growth and maturation of mouse neonatal cardiomyocytes in vitro: clues for cardiac regeneration. J Cell Mol Med 16:507–519

    Article  CAS  PubMed  Google Scholar 

  22. Nakamura J, Kasuya Y, Hamada Y, Nakashima E, Naruse K, Yasuda Y, Kato K, Hotta N (2001) Glucose-induced hyperproliferation of cultured rat aortic smooth muscle cells through polyol pathway hyperactivity. Diabetologia 44:480–487

    Article  CAS  PubMed  Google Scholar 

  23. Graham S, Gorin Y, Abboud HE, Ding M, Lee DY, Shi H, Ding Y, Ma R (2011) Abundance of TRPC6 protein in glomerular mesangial cells is decreased by ROS and PKC in diabetes. Am J Physiol Cell Physiol 301:C304–C315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Shi Y, Wang C, Han S, Pang B, Zhang N, Wang J, Li J (2012) Determination of PKC isoform-specific protein expression in pulmonary arteries of rats with chronic hypoxia-induced pulmonary hypertension. Med Sci Monit 18: BR69–75

    Google Scholar 

  25. Xia Z, Kuo KH, Nagareddy PR, Wang F, Guo Z, Guo T, Jiang J, McNeill JH (2007) N-acetylcysteine attenuates PKC beta2 overexpression and myocardial hypertrophy in streptozotocin-induced diabetic rats. Cardiovasc Res 73:770–782

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Lei S, Gao X, Mao X, Wang T, Wong GT, Vanhoutte PM, Irwin MG, Xia Z (2012) PKC beta inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfunction in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 122:161–173

    Article  CAS  Google Scholar 

  27. Shaw EE, Wood P, Kulpa J, Yang FH, Summerlee AJ, Pyle WG (2009) Relaxin alters cardiac myofilament function through a PKC-dependent pathway. Am J Physiol Heart Circ Physiol 297:H29–H36

    Article  CAS  PubMed  Google Scholar 

  28. Mochly-Rosen D, Khaner H, Lopez J (1991) Identification of intracellular receptor proteins for activated protein kinase c. Proc Natl Acad Sci USA 88:3997–4000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kazi JU, Soh JW (2007) Isoform-specific translocation of PKC isoforms in NIH3T3 cells by TPA. Biochem Biophys Res Commun 364:231–237

    Article  CAS  PubMed  Google Scholar 

  30. Faux MC, Rollins EN, Edwards AS, Langeberg LK, Newton AC, Scott JD (1999) Mechanism of A-kinase-anchoring protein 79 (AKAP79) and protein kinase c interaction. Biochem J 343(Pt 2):443–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Fleischmajer R, Perlish JS, Timpl R (1985) Collagen fibrillogenesis in human skin. Ann N Y Acad Sci 460:246–257

    Article  CAS  PubMed  Google Scholar 

  32. Flevari P, Theodorakis G, Leftheriotis D, Kroupis C, Kolokathis F, Dima K, Anastasiou-Nana M, Kremastinos D (2012) Serum markers of deranged myocardial collagen turnover: their relation to malignant ventricular arrhythmias in cardioverter-defibrillator recipients with heart failure. Am Heart J 164:530–537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81100169).

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Chen or H. Li.

Additional information

W. Su and P. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, W., Wang, P., Chen, H. et al. Role of protein kinase C β2 in relaxin-mediated inhibition of cardiac fibrosis. J Endocrinol Invest 37, 559–564 (2014). https://doi.org/10.1007/s40618-014-0068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0068-7

Keywords

Navigation