Skip to main content
Log in

Effects of testosterone replacement therapy on bone metabolism in male post-surgical hypogonadotropic hypogonadism: focus on the role of androgen receptor CAG polymorphism

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Introduction and aim

The relationship between androgen receptor (AR) CAG polymorphism and bone metabolism is highly controversial. We, therefore, aimed to evaluate the independent role of AR CAG repeat polymorphism on bone metabolism improvement induced by testosterone replacement therapy (TRT) in male post-surgical hypogonadotropic hypogonadism, a condition frequently associated with hypopituitarism and in which the effects of TRT have to be distinguished from those resulting from concomitant administration of pituitary function replacing hormones.

Methods

12 men affected by post-surgical hypogonadotropic hypogonadism [mean duration of hypogonadism 8.3 ± 2.05 (SD) months] were retrospectively assessed before and after TRT (from 74 to 84 weeks after the beginning of therapy). The following measures were studied: parameters of bone metabolism [serum markers and bone mineral density (BMD)], pituitary dependent hormones and genetic analysis (AR CAG repeat number).

Results

Total testosterone, estradiol, free T4 (FT4) and insulin-like growth factor-1 (IGF-1) increased between the two phases, while follicle stimulating hormone (FSH) decreased. While serum markers did not vary significantly between the two phases, BMD improved slightly but significantly in all the studied sites. The number of CAG triplets correlated negatively and significantly with all the variations (Δ-) of BMDs. Conversely, Δ-testosterone correlated positively and significantly with all studied Δ-BMDs, while Δ-FSH, Δ-estradiol, Δ-FT4, and Δ-IGF-1 did not correlate significantly with any of the Δ-BMDs. Multiple linear regression analysis, after correction for Δ-testosterone, showed that CAG repeat length was negatively and significantly associated with ∆-BMD of all measured sites.

Conclusions

Our data suggest that, in post-surgical male hypogonadotropic hypogonadism, shorter AR CAG tract is independently associated with greater TRT-induced improvement of BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AR:

Androgen receptor

TRT:

Testosterone replacement therapy

BMD:

Bone mineral density

FT4:

Free T4

FT3:

Free T3

FSH:

Follicle stimulating hormone

LH:

Luteinizing hormone

Δ-:

Variations

GH:

Growth hormone

IGF-1:

Insulin-like growth factor-1

PTH:

Parathyroid hormone

CTX:

C-terminal telopeptide of collagen type I

PCR:

Polymerase chain reaction

NS:

Not significant

CI:

Confidence interval

References

  1. Oury F (2012) A crosstalk between bone and gonads. Ann N Y Acad Sci 1260:1–7

    Article  PubMed  CAS  Google Scholar 

  2. Tirabassi G, Gioia A, Giovannini L et al (2013) Testosterone and cardiovascular risk. Intern Emerg Med 8(Suppl 1):S65–S69

    Article  PubMed  Google Scholar 

  3. Saad F, Aversa A, Isidori AM, Zafalon L, Zitzmann M, Gooren L (2011) Onset of effects of testosterone treatment and time span until maximum effects are achieved. Eur J Endocrinol 165:675–685

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Snyder PJ, Peachey H, Hannoush P et al (1999) Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab 84:1966–1972

    PubMed  CAS  Google Scholar 

  5. Aversa A, Bruzziches R, Francomano D et al (2012) Effects of long-acting testosterone undecanoate on bone mineral density in middle-aged men with late-onset hypogonadism and metabolic syndrome: results from a 36 months controlled study. Aging Male 15:96–102

    Article  PubMed  CAS  Google Scholar 

  6. Carnevale V, Romagnoli E, Cipriani C et al (2010) Sex hormones and bone health in males. Arch Biochem Biophys 503:110–117

    Article  PubMed  CAS  Google Scholar 

  7. Clarke BL, Khosla S (2009) Androgens and bone. Steroids 74:296–305

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Delli Muti N, Agarwal A, Buldreghini E, et al (2013) Have androgen receptor gene CAG and GGC repeat polymorphisms an effect on sperm motility in infertile men? Andrologia. doi:10.1111/and.12119. (Epub ahead of print)

  9. Zitzmann M, Nieschlag E (2003) The CAG repeat polymorphism within the androgen receptor gene and maleness. Int J Androl 26:76–83

    Article  PubMed  CAS  Google Scholar 

  10. Van Pottelbergh I, Lumbroso S, Goemaere S, Sultan C, Kaufman JM (2001) Lack of influence of the androgen receptor gene CAG-repeat polymorphism on sex steroid status and bone metabolism in elderly men. Clin Endocrinol (Oxf) 55:659–666

    Article  Google Scholar 

  11. Olney RC (2003) Regulation of bone mass by growth hormone. Med Pediatr Oncol 41:228–234

    Article  PubMed  Google Scholar 

  12. Williams GR (2009) Actions of thyroid hormones in bone. Endokrynol Pol. 60:380–388

    PubMed  CAS  Google Scholar 

  13. Arnaldi G, Mancini T, Tirabassi G, Trementino L, Boscaro M (2012) Advances in the epidemiology, pathogenesis, and management of Cushing’s syndrome complications. J Endocrinol Investig 35:434–448

    Article  CAS  Google Scholar 

  14. Bhasin S, Cunningham GR, Hayes FJ et al (2010) Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 95:2536–2559

    Article  PubMed  CAS  Google Scholar 

  15. Saad F, Kamischke A, Yassin A et al (2007) More than eight years’ hands-on experience with the novel long-acting parenteral testosterone undecanoate. Asian J Androl 9:291–297

    Article  PubMed  CAS  Google Scholar 

  16. Gabellieri E, Chiovato L, Lage M, Castro AI, Casanueva FF (2010) Testing growth hormone deficiency in adults. Front Horm Res 38:139–144

    Article  PubMed  CAS  Google Scholar 

  17. Persani L (2012) Clinical review: central hypothyroidism: pathogenic, diagnostic, and therapeutic challenges. J Clin Endocrinol Metab 97:3068–3078

    Article  PubMed  CAS  Google Scholar 

  18. Grossman AB (2010) Clinical review: the diagnosis and management of central hypoadrenalism. J Clin Endocrinol Metab 95:4855–4863

    Article  PubMed  CAS  Google Scholar 

  19. Rao SS, Budhwar N, Ashfaque A (2010) Osteoporosis in men. Am Fam Physician 82:503–508

    PubMed  Google Scholar 

  20. Zitzmann M, Brune M, Kornmann B, Gromoll J, Junker R, Nieschlag E (2001) The CAG repeat polymorphism in the androgen receptor gene affects bone density and bone metabolism in healthy males. Clin Endocrinol (Oxf) 55:649–657

    Article  CAS  Google Scholar 

  21. Zitzmann M, Depenbusch M, Gromoll J, Nieschlag E (2004) X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J Clin Endocrinol Metab 89:6208–6217

    Article  PubMed  CAS  Google Scholar 

  22. Guadalupe-Grau A, Rodríguez-González FG, Ponce-González JG et al (2010) Bone mass and the CAG and GGN androgen receptor polymorphisms in young men. PLoS ONE 5(7):e11529. doi:10.1371/journal.pone.0011529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Beilin J, Ball EM, Favaloro JM, Zajac JD (2000) Effect of the androgen receptor CAG repeat polymorphism on transcriptional activity: specificity in prostate and non-prostate cell lines. J Mol Endocrinol 25:85–96

    Article  PubMed  CAS  Google Scholar 

  24. Thomas JD, Monson JP (2009) Adult GH deficiency throughout lifetime. Eur J Endocrinol 161(Suppl 1):S97–S106

    Article  PubMed  CAS  Google Scholar 

  25. Tirabassi G, Papa R, Faloia E, Boscaro M, Arnaldi G (2011) Corticotrophin-releasing hormone and desmopressin tests in the differential diagnosis between Cushing’s disease and pseudo-Cushing state: a comparative study. Clin Endocrinol (Oxf) 75:666–672

    Article  CAS  Google Scholar 

  26. Tirabassi G, Faloia E, Papa R, Furlani G, Boscaro M, Arnaldi G (2010) Use of the desmopressin test in the differential diagnosis of pseudo-Cushing state from Cushing’s disease. J Clin Endocrinol Metab 95:1115–1122

    Article  PubMed  CAS  Google Scholar 

  27. Arnaldi G, Tirabassi G, Papa R et al (2009) Human corticotropin releasing hormone test performance in the differential diagnosis between Cushing’s disease and pseudo-Cushing state is enhanced by combined ACTH and cortisol analysis. Eur J Endocrinol 160:891–898

    Article  PubMed  CAS  Google Scholar 

  28. Granata A, Tirabassi G, Pugni V et al (2013) Sexual dysfunctions in men affected by autoimmune Addison’s disease before and after short-term gluco- and mineralocorticoid replacement therapy. J Sex Med 10:2036–2043

    Article  PubMed  CAS  Google Scholar 

  29. Andrioli M, Pecori Giraldi F, Cavagnini F (2006) Isolated corticotrophin deficiency. Pituitary 9:289–295

    Article  PubMed  CAS  Google Scholar 

  30. Løvås K, Gjesdal CG, Christensen M et al (2009) Glucocorticoid replacement therapy and pharmacogenetics in Addison’s disease: effects on bone. Eur J Endocrinol 160:993–1002

    Article  PubMed  CAS  Google Scholar 

  31. Zelissen PM, Croughs RJ, van Rijk PP, Raymakers JA (1994) Effect of glucocorticoid replacement therapy on bone mineral density in patients with Addison disease. Ann Intern Med 120:207–210

    Article  PubMed  CAS  Google Scholar 

  32. Nezzo M, De Visschere P, T’sjoen G, Weyers S, Villeirs G (2013) Role of imaging in the diagnosis and management of complete androgen insensitivity syndrome in adults. Case Rep Radiol 2013:158484. doi:10.1155/2013/158484

    PubMed Central  PubMed  Google Scholar 

  33. Bertelloni S, Baroncelli GI, Federico G, Cappa M, Lala R, Saggese G (1998) Altered bone mineral density in patients with complete androgen insensitivity syndrome. Horm Res 50:309–314

    Article  PubMed  CAS  Google Scholar 

  34. Sobel V, Schwartz B, Zhu YS, Cordero JJ, Imperato-McGinley J (2006) Bone mineral density in the complete androgen insensitivity and 5alpha-reductase-2 deficiency syndromes. J Clin Endocrinol Metab 91:3017–3023

    Article  PubMed  CAS  Google Scholar 

  35. Diamond T, Campbell J, Bryant C, Lynch W (1998) The effect of combined androgen blockade on bone turnover and bone mineral densities in men treated for prostate carcinoma: longitudinal evaluation and response to intermittent cyclic etidronate therapy. Cancer 83:1561–1566

    Article  PubMed  CAS  Google Scholar 

  36. Francomano D, Greco EA, Lenzi A, Aversa A (2013) CAG repeat testing of androgen receptor polymorphism: is this necessary for the best clinical management of hypogonadism? J Sex Med 10:2373–2381

    PubMed  CAS  Google Scholar 

  37. Langdahl BL, Stenkjaer L, Carstens M, Tofteng CL, Eriksen EF (2003) A CAG repeat polymorphism in the androgen receptor gene is associated with reduced bone mass and increased risk of osteoporotic fractures. Calcif Tissue Int 73:237–243

    Article  PubMed  Google Scholar 

  38. Remes T, Väisänen SB, Mahonen A et al (2003) Aerobic exercise and bone mineral density in middle-aged finnish men: a controlled randomized trial with reference to androgen receptor, aromatase, and estrogen receptor alpha gene polymorphisms small star, filled. Bone 32:412–420

    Article  PubMed  CAS  Google Scholar 

  39. Välimäki VV, Piippo K, Välimäki S, Löyttyniemi E, Kontula K, Välimäki MJ (2005) The relation of the XbaI and PvuII polymorphisms of the estrogen receptor gene and the CAG repeat polymorphism of the androgen receptor gene to peak bone mass and bone turnover rate among young healthy men. Osteoporos Int 16:1633–1640

    Article  PubMed  CAS  Google Scholar 

  40. Stiger F, Brändström H, Gillberg P et al (2008) Association between repeat length of exon 1 CAG microsatellite in the androgen receptor and bone density in men is modulated by sex hormone levels. Calcif Tissue Int 82:427–435

    Article  PubMed  CAS  Google Scholar 

  41. Ferlin A, Schipilliti M, Vinanzi C et al (2011) Bone mass in subjects with Klinefelter syndrome: role of testosterone levels and androgen receptor gene CAG polymorphism. J Clin Endocrinol Metab 96:739–745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors are very grateful to Mrs. Monica Glebocki for language editing and to Dr. Roberta Papa (Centre of Socio-economic Gerontological Research, Scientific-Technological Area, INRCA, Ancona, Italy) for statistical advice. This work was in part supported by a MIUR grant (PRIN 2009, Protocol 2009FW5SP3_002).

Conflict of interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Balercia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tirabassi, G., delli Muti, N., Gioia, A. et al. Effects of testosterone replacement therapy on bone metabolism in male post-surgical hypogonadotropic hypogonadism: focus on the role of androgen receptor CAG polymorphism. J Endocrinol Invest 37, 393–400 (2014). https://doi.org/10.1007/s40618-014-0052-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0052-2

Keywords

Navigation