Skip to main content

Impact of Maternal Demographic and Socioeconomic Factors on the Association Between Particulate Matter and Adverse Birth Outcomes: a Systematic Review and Meta-analysis

Abstract

Background

Numerous studies conducted in the United States found associations between prenatal exposure to particulate matter (PM) and adverse birth outcomes, and some studies identified vulnerable populations, including certain racial/ethnic groups and people with low-socioeconomic status. However, their findings are not always consistent. In this review, we compared the risk of adverse birth outcomes due to PM exposures among subpopulations and investigated whether any particular population is more vulnerable.

Methods

We selected U.S. studies examining associations between PM exposure during pregnancy and birth outcomes that included results for effect modification by race/ethnicity and/or maternal education. We summarized the findings for various sizes of PM and birth outcomes. Meta-analysis was conducted to quantify vulnerable race/ethnicity for the association between fine PM (PM2.5) and birthweight.

Results

In total, 19 studies were assessed, and PM-related risks of adverse birth outcomes, particularly those related to fetal growth, likely differ across subpopulations. A meta-analysis from five studies showed that a 10 μg/m3 increase of PM2.5 during the full-gestation reduced birthweight by 21.9 g (95% confidence interval 11.7, 32.0), 15.7 g (10.1, 21.4), 9.3 g (2.7, 15.8), and 5.8 g (− 9.0, 20.7) for Black, White, Hispanic, and Asian mothers, respectively.

Conclusion

Our review indicated that Black mothers and mothers with low educational attainment are more vulnerable subpopulations. More investigation is needed for effect modification by other maternal factors, such as household income. Characterizing and quantifying vulnerable subpopulations are essential for addressing environmental justice since it can help regulatory agencies allocate resources and design policy interventions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

BW:

Birthweight

CI:

Confidence interval

LBW:

Low birthweight

PM:

Particulate matter

PM2.5 :

Particulate matter of less than 2.5 μm in diameter

PM10 :

Particulate matter of less than 10 μm in diameter

PMc :

Particulate matter with a diameter between 2.5 and 10 μm

PTB:

Preterm birth

SES:

Socioeconomic status

SGA:

Small for gestational age

TLBW:

Term low birthweight

References

  1. Ebisu K, Malig B, Hasheminassab S, Sioutas C. Age-specific seasonal associations between acute exposure to PM2. 5 sources and cardiorespiratory hospital admissions in California. Atmos Environ. 2019;218:117029.

    CAS  Article  Google Scholar 

  2. Atkinson RW, Kang S, Anderson HR, Mills IC, Walton HA. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax. 2014;69(7):660–5. https://doi.org/10.1136/thoraxjnl-2013-204492.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. DeFranco E, Hall E, Hossain M, Chen A, Haynes EN, Jones D, et al. Air pollution and stillbirth risk: exposure to airborne particulate matter during pregnancy is associated with fetal death. PLoS One. 2015;10(3):e0120594. https://doi.org/10.1371/journal.pone.0120594.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Girguis MS, Strickland MJ, Hu X, Liu Y, Bartell SM, Vieira VM. Maternal exposure to traffic-related air pollution and birth defects in Massachusetts. Environ Res. 2016;146:1–9. https://doi.org/10.1016/j.envres.2015.12.010.

    CAS  Article  PubMed  Google Scholar 

  5. Basu R, Harris M, Sie L, Malig B, Broadwin R, Green R. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California. Environ Res. 2014;128:42–51. https://doi.org/10.1016/j.envres.2013.10.008.

    CAS  Article  PubMed  Google Scholar 

  6. Ng C, Malig B, Hasheminassab S, Sioutas C, Basu R, Ebisu K. Source apportionment of fine particulate matter and risk of term low birth weight in California: exploring modification by region and maternal characteristics. Sci Total Environ. 2017;605–606:647–54. https://doi.org/10.1016/j.scitotenv.2017.06.053.

    CAS  Article  PubMed  Google Scholar 

  7. Hao H, Chang HH, Holmes HA, Mulholland JA, Klein M, Darrow LA, et al. Air pollution and preterm birth in the U.S. State of Georgia (2002-2006): associations with concentrations of 11 ambient air pollutants estimated by combining community multiscale air quality model (CMAQ) simulations with stationary monitor measurements. Environ Health Perspect. 2016;124(6):875–80. https://doi.org/10.1289/ehp.1409651.

    CAS  Article  PubMed  Google Scholar 

  8. Darrow LA, Klein M, Strickland MJ, Mulholland JA, Tolbert PE. Ambient air pollution and birth weight in full-term infants in Atlanta, 1994–2004. Environ Health Perspect. 2011;119(5):731–7. https://doi.org/10.1289/ehp.1002785.

    CAS  Article  PubMed  Google Scholar 

  9. Le HQ, Batterman SA, Wirth JJ, Wahl RL, Hoggatt KJ, Sadeghnejad A, et al. Air pollutant exposure and preterm and term small-for-gestational-age births in Detroit, Michigan: long-term trends and associations. Environ Int. 2012;44:7–17. https://doi.org/10.1016/j.envint.2012.01.003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Salihu HM, Ghaji N, Mbah AK, Alio AP, August EM, Boubakari I. Particulate pollutants and racial/ethnic disparity in feto-infant morbidity outcomes. Matern Child Health J. 2012;16(8):1679–87. https://doi.org/10.1007/s10995-011-0868-8.

    Article  PubMed  Google Scholar 

  11. U.S. EPA. Integrated Science Assessment (ISA) for particulate matter (Final Report, Dec 2009): US Environmental Protection Agency: Washington DC, USA2009.

  12. Ebisu K, Berman JD, Bell ML. Exposure to coarse particulate matter during gestation and birth weight in the U.S. Environ Int. 2016;94:519–24. https://doi.org/10.1016/j.envint.2016.06.011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Baker JL, Olsen LW, Sorensen TI. Weight at birth and all-cause mortality in adulthood. Epidemiology. 2008;19(2):197–203. https://doi.org/10.1097/EDE.0b013e31816339c6.

    Article  PubMed  Google Scholar 

  14. Lackland DT, Egan BM, Ferguson PL. Low birth weight as a risk factor for hypertension. J Clin Hypertens (Greenwich). 2003;5(2):133–6.

    CAS  Article  Google Scholar 

  15. Jornayvaz FR, Vollenweider P, Bochud M, Mooser V, Waeber G, Marques-Vidal P. Low birth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study. Cardiovasc Diabetol. 2016;15:73. https://doi.org/10.1186/s12933-016-0389-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kajantie E, Osmond C, Barker DJ, Forsen T, Phillips DI, Eriksson JG. Size at birth as a predictor of mortality in adulthood: a follow-up of 350 000 person-years. Int J Epidemiol. 2005;34(3):655–63. https://doi.org/10.1093/ije/dyi048.

    Article  PubMed  Google Scholar 

  17. Morello-Frosch R, Zuk M, Jerrett M, Shamasunder B, Kyle AD. Understanding the cumulative impacts of inequalities in environmental health: implications for policy. Health Aff (Millwood). 2011;30(5):879–87. https://doi.org/10.1377/hlthaff.2011.0153.

    Article  Google Scholar 

  18. Geer LA, Weedon J, Bell ML. Ambient air pollution and term birth weight in Texas from 1998 to 2004. J Air Waste Manage Assoc. 2012;62(11):1285–95. https://doi.org/10.1080/10962247.2012.707632.

    CAS  Article  Google Scholar 

  19. Li X, Huang S, Jiao A, Yang X, Yun J, Wang Y, et al. Association between ambient fine particulate matter and preterm birth or term low birth weight: an updated systematic review and meta-analysis. Environ Pollut. 2017;227:596–605. https://doi.org/10.1016/j.envpol.2017.03.055.

    CAS  Article  PubMed  Google Scholar 

  20. Shah PS, Balkhair T. Knowledge synthesis group on determinants of preterm LBWb. Air pollution and birth outcomes: a systematic review. Environ Int. 2011;37(2):498–516. https://doi.org/10.1016/j.envint.2010.10.009.

    CAS  Article  PubMed  Google Scholar 

  21. Klepac P, Locatelli I, Korosec S, Kunzli N, Kukec A. Ambient air pollution and pregnancy outcomes: a comprehensive review and identification of environmental public health challenges. Environ Res. 2018;167:144–59. https://doi.org/10.1016/j.envres.2018.07.008.

    CAS  Article  PubMed  Google Scholar 

  22. Westergaard N, Gehring U, Slama R, Pedersen M. Ambient air pollution and low birth weight - are some women more vulnerable than others? Environ Int. 2017;104:146–54. https://doi.org/10.1016/j.envint.2017.03.026.

    CAS  Article  PubMed  Google Scholar 

  23. Heo S, Fong KC, Bell ML. Risk of particulate matter on birth outcomes in relation to maternal socio-economic factors: a systematic review. Environ Res Lett. 2019;14.

  24. Cochrane Collaboration. Cochrane handbook for systematic reviews of interventions version 5.1. 0. 2011.

  25. Morello-Frosch R, Jesdale BM, Sadd JL, Pastor M. Ambient air pollution exposure and full-term birth weight in California. Environ Health. 2010;9. https://doi.org/10.1186/1476-069x-9-44.

  26. Padula AM, Yang W, Carmichael SL, Tager IB, Lurmann F, Hammond SK, et al. Air pollution, neighbourhood socioeconomic factors, and neural tube defects in the San Joaquin Valley of California. Paediatr Perinat Epidemiol. 2015;29(6):536–45. https://doi.org/10.1111/ppe.12244.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Winkleby MA, Cubbin C. Influence of individual and neighbourhood socioeconomic status on mortality among black, Mexican-American, and white women and men in the United States. J Epidemiol Community Health. 2003;57(6):444–52. https://doi.org/10.1136/jech.57.6.444.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Bosma H, van de Mheen HD, Borsboom GJ, Mackenbach JP. Neighborhood socioeconomic status and all-cause mortality. Am J Epidemiol. 2001;153(4):363–71. https://doi.org/10.1093/aje/153.4.363.

    CAS  Article  PubMed  Google Scholar 

  29. Bero L, Chartres N, Diong J, Fabbri A, Ghersi D, Lam J, et al. The risk of bias in observational studies of exposures (ROBINS-E) tool: concerns arising from application to observational studies of exposures. Syst Rev. 2018;7(1):242. https://doi.org/10.1186/s13643-018-0915-2.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. https://doi.org/10.1002/sim.1186.

    Article  Google Scholar 

  31. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.

  32. Parker JD, Woodruff TJ, Basu R, Schoendorf KC. Air pollution and birth weight among term infants in California. Pediatrics. 2005;115(1):121–8.

    Article  Google Scholar 

  33. Padula AM, Mortimer KM, Tager IB, Hammond SK, Lurmann FW, Yang W, et al. Traffic-related air pollution and risk of preterm birth in the San Joaquin Valley of California. Ann Epidemiol. 2014;24(12):888–95e4. https://doi.org/10.1016/j.annepidem.2014.10.004.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rappazzo KM, Daniels JL, Messer LC, Poole C, Lobdell DT. Exposure to fine particulate matter during pregnancy and risk of preterm birth among women in New Jersey, Ohio, and Pennsylvania, 2000-2005. Environ Health Perspect. 2014;122(9):992–7. https://doi.org/10.1289/ehp.1307456.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Laurent O, Hu J, Li L, Cockburn M, Escobedo L, Kleeman MJ, et al. Sources and contents of air pollution affecting term low birth weight in Los Angeles County, California, 2001-2008. Environ Res. 2014;134:488–95. https://doi.org/10.1016/j.envres.2014.05.003.

    CAS  Article  PubMed  Google Scholar 

  36. Bell ML, Ebisu K, Belanger K. Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environ Health Perspect. 2007;115(7):1118–24.

    CAS  Article  Google Scholar 

  37. Basu R, Woodruff TJ, Parker JD, Saulnier L, Schoendorf KC. Comparing exposure metrics in the relationship between PM2.5 and birth weight in California. J Expo Anal Environ Epidemiol. 2004;14(5):391–6. https://doi.org/10.1038/sj.jea.7500336.

    CAS  Article  PubMed  Google Scholar 

  38. Basu R, Pearson D, Ebisu K, Malig B. Association between PM2.5 and PM2.5 constituents and preterm delivery in California, 2000-2006. Paediatr Perinat Epidemiol. 2017;31(5):424–34. https://doi.org/10.1111/ppe.12380.

    Article  PubMed  Google Scholar 

  39. Pereira G, Belanger K, Ebisu K, Bell ML. Fine particulate matter and risk of preterm birth in Connecticut in 2000-2006: a longitudinal study. Am J Epidemiol. 2014;179(1):67–74. https://doi.org/10.1093/aje/kwt216.

    Article  PubMed  Google Scholar 

  40. Rich DQ, Demissie K, Lu SE, Kamat L, Wartenberg D, Rhoads GG. Ambient air pollutant concentrations during pregnancy and the risk of fetal growth restriction. J Epidemiol Community Health. 2009;63(6):488–96. https://doi.org/10.1136/jech.2008.082792.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Green R, Sarovar V, Malig B, Basu R. Association of stillbirth with ambient air pollution in a California cohort study. Am J Epidemiol. 2015;181(11):874–82. https://doi.org/10.1093/aje/kwu460.

    Article  PubMed  Google Scholar 

  42. Laurent O, Hu J, Li L, Kleeman MJ, Bartell SM, Cockburn M, et al. Low birth weight and air pollution in California: Which sources and components drive the risk? Environ Int. 2016;92–93:471–7. https://doi.org/10.1016/j.envint.2016.04.034.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Enders C, Pearson D, Harley K, Ebisu K. Exposure to coarse particulate matter during gestation and term low birthweight in California: variation in exposure and risk across region and socioeconomic subgroup. Sci Total Environ. 2019;653:1435–44. https://doi.org/10.1016/j.scitotenv.2018.10.323.

    CAS  Article  PubMed  Google Scholar 

  44. Lee J-W, Lee H. Human capital in the long run. J Dev Econ. 2016;122:147–69.

    Article  Google Scholar 

  45. Roser M, Ortiz-Ospina E. Tertiary education. In: Our World in Data. OurWorldInData.org. 2020. https://ourworldindata.org/tertiary-education.

  46. Bravo MA, Anthopolos R, Bell ML, Miranda ML. Racial isolation and exposure to airborne particulate matter and ozone in understudied US populations: Environmental justice applications of downscaled numerical model output. Environ Int. 2016;92–93:247–55. https://doi.org/10.1016/j.envint.2016.04.008.

    CAS  Article  PubMed  Google Scholar 

  47. Mikati I, Benson AF, Luben TJ, Sacks JD, Richmond-Bryant J. Disparities in distribution of particulate matter emission sources by race and poverty status. Am J Public Health. 2018;108(4):480–5. https://doi.org/10.2105/AJPH.2017.304297.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gwynn RC, Thurston GD. The burden of air pollution: impacts among racial minorities. Environ Health Perspect. 2001;109(Suppl 4):501–6. https://doi.org/10.1289/ehp.01109s4501.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Ncube CN, Enquobahrie DA, Albert SM, Herrick AL, Burke JG. Association of neighborhood context with offspring risk of preterm birth and low birthweight: a systematic review and meta-analysis of population-based studies. Soc Sci Med. 2016;153:156–64. https://doi.org/10.1016/j.socscimed.2016.02.014.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alhusen JL, Bower KM, Epstein E, Sharps P. Racial discrimination and adverse birth outcomes: an integrative review. J Midwifery Womens Health. 2016;61(6):707–20. https://doi.org/10.1111/jmwh.12490.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Martin JA, Hamilton BE, Osterman MJ, Driscoll AK. Births: Final data for 20182019 Contract No.: 13.

  52. Kannan S, Misra DP, Dvonch JT, Krishnakumar A. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect. 2006;114(11):1636–42. https://doi.org/10.1289/ehp.9081.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Vadillo-Ortega F, Osornio-Vargas A, Buxton MA, Sanchez BN, Rojas-Bracho L, Viveros-Alcaraz M, et al. Air pollution, inflammation and preterm birth: a potential mechanistic link. Med Hypotheses. 2014;82(2):219–24. https://doi.org/10.1016/j.mehy.2013.11.042.

    CAS  Article  PubMed  Google Scholar 

  54. Wilhelm M, Ghosh JK, Su J, Cockburn M, Jerrett M, Ritz B. Traffic-related air toxics and term low birth weight in Los Angeles County, California. Environ Health Perspect. 2012;120(1):132–8. https://doi.org/10.1289/ehp.1103408.

    CAS  Article  PubMed  Google Scholar 

  55. Topinka J, Binkova B, Mrackova G, Stavkova Z, Benes I, Dejmek J, et al. DNA adducts in human placenta as related to air pollution and to GSTM1 genotype. Mutat Res. 1997;390(1–2):59–68. https://doi.org/10.1016/s0165-1218(96)00166-8.

    CAS  Article  PubMed  Google Scholar 

  56. Suter MA, Aagaard KM, Coarfa C, Robertson M, Zhou G, Jackson BP, et al. Association between elevated placental polycyclic aromatic hydrocarbons (PAHs) and PAH-DNA adducts from Superfund sites in Harris County, and increased risk of preterm birth (PTB). Biochem Biophys Res Commun. 2019;516(2):344–9. https://doi.org/10.1016/j.bbrc.2019.06.049.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Liu Y, Wang L, Wang F, Li C. Effect of fine particulate matter (PM2.5) on rat placenta pathology and perinatal outcomes. Med Sci Monit. 2016;22:3274–80. https://doi.org/10.12659/msm.897808.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Bell ML, Ebisu K. Environmental inequality in exposures to airborne particulate matter components in the United States. Environ Health Perspect. 2012;120(12):1699–704. https://doi.org/10.1289/ehp.1205201.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael Bates, Dr. John Balmes, Dr. Carrisa Harris, Dr. Juleen Lam, and Liza Lutzker for their insightful suggestions on review strategy; Charleen Kubota and Debbie Jan for their guidance on literature search; and Dr. Allegra Kim and Dharshani Pearson for their helpful comments on the manuscript.

Availability of Data and Material

All numerical results were obtained from reviewed articles.

Code Availability

R code for meta-analysis is available upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Ebisu.

Ethics declarations

Conflict of Interest

The authors declare they have no competing interests.

Ethics Approval

Ethical approval was not necessary due to the nature of the review article.

Informed Consent

Individual information was not used in this review, and, therefore, informed consent is not necessary.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Disclaimer

The opinions expressed in this article are those of the authors and do not represent those of the California Environmental Protection Agency or the Office of Environmental Health Hazard Assessment.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 32 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thayamballi, N., Habiba, S., Laribi, O. et al. Impact of Maternal Demographic and Socioeconomic Factors on the Association Between Particulate Matter and Adverse Birth Outcomes: a Systematic Review and Meta-analysis. J. Racial and Ethnic Health Disparities 8, 743–755 (2021). https://doi.org/10.1007/s40615-020-00835-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40615-020-00835-2

Keywords

  • Particulate matter
  • Vulnerable population
  • Environmental justice
  • Birth outcome