Skip to main content

Advertisement

Log in

A Systematic Review of Environmental Health Outcomes in Selected American Indian and Alaska Native Populations

  • Published:
Journal of Racial and Ethnic Health Disparities Aims and scope Submit manuscript

Abstract

Background

Economic and social marginalization among American Indians and Alaska Natives (AI/ANs) results in higher chronic disease prevalence. Potential causal associations between toxic environmental exposures and adverse health outcomes within AI/AN communities are not well understood.

Objectives

This review examines epidemiological literature on exposure to toxicants and associated adverse health outcomes among AI/AN populations.

Methods

PubMed, Embase, Cochrane, Environment Complete, Web of Science Plus, DART, and ToxLine were searched for English-language articles. The following data were extracted: lead author’s last name, publication year, cohort name, study location, AI/AN tribe, study initiation and conclusion, sample size, primary characteristic, environmental exposure, health outcomes, risk estimates, and covariates.

Results

About 31 articles on three types of environmental exposures met inclusion criteria: persistent organic pollutants (POPs), heavy metals, and open dumpsites. Of these, 17 addressed exposure to POPs, 10 heavy metal exposure, 2 exposure to both POPs and heavy metals, and 2 exposure to open dumpsites. Studies on the Mohawk Nation at Akwesasne; Yupik on St. Lawrence Island, Alaska; Navajo Nation; Gila River Indian Community; Cheyenne River Sioux; 197 Alaska Native villages; and 13 tribes in Arizona, Oklahoma, North Dakota, and South Dakota that participated in the Strong Heart Study support associations between toxicant exposure and various chronic conditions including cardiovascular conditions, reproductive abnormalities, cancer, autoimmune disorders, neurological deficits, and diabetes.

Discussion

The complex interplay of environmental and social factors in disease etiology among AI/ANs is a product of externally imposed environmental exposures, systemic discrimination, and modifiable risk behaviors. The connection between environmental health disparities and adverse health outcomes indicates a need for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Not in My Backyard: Executive Order 12,898 and Title VI as Tools for Achieving Environmental Justice. Washington, DC U.S. Commission on Civil Rights2003.

  2. Foster S. Justice from the Ground up: Distributive Inequities, Grassroots Resistance, and the Transformative Politics of the Environmental Justice Movement. California Law Review. 1998;86(4):775–841. https://doi.org/10.2307/3481140.

    Article  Google Scholar 

  3. Kuehn RR. A Taxonomy of Environmental Justice. Environmental Law Reporter. 2000;30:10681.

    Google Scholar 

  4. Morello-Frosch R, Zuk M, Jerrett M, Shamasunder B, Kyle AD. Understanding the cumulative impacts of inequalities in environmental health: implications for policy. Health Aff. 2011;30(5):879–87. https://doi.org/10.1377/hlthaff.2011.0153.

    Article  Google Scholar 

  5. Weaver J. Defending Mother Earth: Native American Perspectives on Environmental Justice. Maryknoll: Orbis Books; 2003.

    Google Scholar 

  6. Burger J, Gochfeld M. Conceptual environmental justice model for evaluating chemical pathways of exposure in low-income, minority, native American, and other unique exposure populations Am J Public Health. 2011;101 Suppl 1(S1):S64-S73. doi:10.2105/AJPH.2010.300077.

  7. Arquette M, Cole M, Cook K, LaFrance B, Peters M, Ransom J, et al. Holistic risk-based environmental decision making: a Native perspective. Environ Health Perspect. 2002;110(Suppl 2):259–64. https://doi.org/10.1289/ehp.02110s2259.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schlosberg D, Carruthers D. Indigenous Struggles, Environmental Justice, and Community Capabilities. Global Environ Polit. 2010;10(4):12–35. https://doi.org/10.1162/GLEP_a_00029.

    Article  Google Scholar 

  9. Liévanos R. Air-Toxic Clusters Revisited: Intersectional Environmental Inequalities and Indigenous Deprivation in the U.S. Environmental Protection Agency Regions. Race and Social Problems. 2019;11. doi:10.1007/s12552-019-09260-5.

  10. Saenz M. Federal and State Recognized Tribes. National Conference of State Legislatures 2019. http://www.ncsl.org/research/state-tribal-institute/list-of-federal-and-state-recognized-tribes.aspx#State. Accessed December 3 2019.

  11. Holifield R. Environmental Justice as Recognition and Participation in Risk Assessment: Negotiating and Translating Health Risk at a Superfund Site in Indian Country. Ann Assoc Am Geogr. 2012;102(3):591–613. https://doi.org/10.1080/00045608.2011.641892.

    Article  Google Scholar 

  12. Evans-Campbell T. Historical Trauma in American Indian/Native Alaska Communities:A Multilevel Framework for Exploring Impacts on Individuals, Families, and Communities. Journal of Interpersonal Violence. 2008;23(3):316–38. https://doi.org/10.1177/0886260507312290.

    Article  PubMed  Google Scholar 

  13. 2017 American Community Survey 1-Year Estimates. U.S. Census Bureau. 2017. https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk. 2018.

  14. Clark B. The Indigenous Environmental Movement in the United States: Transcending Borders in Struggles against Mining, Manufacturing, and the Capitalist State. Organ Environ. 2002;15(4):410–42. https://doi.org/10.1177/1086026602238170.

    Article  Google Scholar 

  15. Hoover E, Cook K, Plain R, Sanchez K, Waghiyi V, Miller P, et al. Indigenous peoples of North America: environmental exposures and reproductive justice. Environ Health Perspect. 2012;120(12):1645–9. https://doi.org/10.1289/ehp.1205422.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brook D. Environmental Genocide. Am J Econ Sociol. 1998;57(1):105–13. https://doi.org/10.1111/j.1536-7150.1998.tb03260.x.

    Article  Google Scholar 

  17. Bacon JM. Settler colonialism as eco-social structure and the production of colonial ecological violence. Environmental Sociology. 2019;5(1):59–69. https://doi.org/10.1080/23251042.2018.1474725.

    Article  Google Scholar 

  18. FastStats - Health of American Indian or Alaska Native Population. U.S. Centers for Disease Control and Prevention. 2017. https://www.cdc.gov/nchs/fastats/american-indian-health.htm. 2018.

  19. Disparities | Fact Sheets. Indian Health Service. 2018. https://www.ihs.gov/newsroom/factsheets/disparities/. 2018.

  20. Chowdhury R, Ramond A, O'Keeffe LM, Shahzad S, Kunutsor SK, Muka T, et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. Bmj. 2018;362:k3310. https://doi.org/10.1136/bmj.k3310.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Parker VG, Mayo RM, Logan BN, Holder BJ, Smart PT. Toxins and Diabetes Mellitus: An Environmental Connection? Diabetes Spectrum: A Publication of the American Diabetes Association. 2002;15(2):109. https://doi.org/10.2337/diaspect.15.2.109.

    Article  Google Scholar 

  22. Yorita Christensen KL, Carrico CK, Sanyal AJ, Gennings C. Multiple classes of environmental chemicals are associated with liver disease: NHANES 2003-2004. Int J Hyg Environ Health. 2013;216(6):703–9. https://doi.org/10.1016/j.ijheh.2013.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Soderland P, Lovekar S, Weiner DE, Brooks DR, Kaufman JS. Chronic Kidney Disease Associated With Environmental Toxins and Exposures. Adv Chronic Kidney Dis. 2010;17(3):254–64. https://doi.org/10.1053/j.ackd.2010.03.011.

    Article  PubMed  Google Scholar 

  24. DiBari J. How the Sandoval Ruling Will Affect Environmental Justice Plaintiffs Comment. St John's Law Review. 2002;4:1019–46.

    Google Scholar 

  25. Foster S. The Challenge of Environmental Justice. Rutgers Journal of Law and Urban Policy. 2004:1–12.

  26. Pulido L. Rethinking Environmental Racism: White Privilege and Urban Development in Southern California. Ann Assoc Am Geogr. 2000;90(1):12–40. https://doi.org/10.1111/0004-5608.00182.

    Article  Google Scholar 

  27. Pulido L. Geographies of race and ethnicity II:Environmental racism, racial capitalism and state-sanctioned violence. Prog Hum Geogr. 2017;41(4):524–33. https://doi.org/10.1177/0309132516646495.

    Article  Google Scholar 

  28. McOliver CA, Camper AK, Doyle JT, Eggers MJ, Ford TE, Lila MA, et al. Community-Based Research as a Mechanism to Reduce Environmental Health Disparities in American Indian and Alaska Native Communities. Int J Environ Res Public Health. 2015;12(4):4076–100.

    Article  Google Scholar 

  29. Hardell L, Bavel B, Lindstrom G, Eriksson M, Carlberg M. In utero exposure to persistent organic pollutants in relation to testicular cancer risk. Int J Androl. 2006;29(1):228–34. https://doi.org/10.1111/j.1365-2605.2005.00622.x.

    Article  CAS  PubMed  Google Scholar 

  30. Hardell L, Andersson SO, Carlberg M, Bohr L, van Bavel B, Lindstrom G, et al. Adipose tissue concentrations of persistent organic pollutants and the risk of prostate cancer. J Occup Environ Med. 2006;48(7):700–7. https://doi.org/10.1097/01.jom.0000205989.46603.43.

    Article  CAS  PubMed  Google Scholar 

  31. Ljunggren SA, Helmfrid I, Salihovic S, van Bavel B, Wingren G, Lindahl M, et al. Persistent organic pollutants distribution in lipoprotein fractions in relation to cardiovascular disease and cancer. Environ Int. 2014;65:93–9. https://doi.org/10.1016/j.envint.2013.12.017.

    Article  CAS  PubMed  Google Scholar 

  32. Reaves DK, Ginsburg E, Bang JJ, Fleming JM. Persistent organic pollutants and obesity: are they potential mechanisms for breast cancer promotion? Endocr Relat Cancer. 2015;22(2):R69–86. https://doi.org/10.1530/ERC-14-0411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ha MH, Lee DH, Jacobs DR. Association between serum concentrations of persistent organic pollutants and self-reported cardiovascular disease prevalence: results from the National Health and Nutrition Examination Survey, 1999-2002. Environ Health Perspect. 2007;115(8):1204–9. https://doi.org/10.1289/ehp.10184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lind PM, van Bavel B, Salihovic S, Lind L. Circulating Levels of Persistent Organic Pollutants (POPs) and Carotid Atherosclerosis in the Elderly. Environ Health Perspect. 2012;120(1):38–43.

    Article  CAS  Google Scholar 

  35. Ha MH, Lee DH, Son HK, Park SK, Jacobs DR Jr. Association between serum concentrations of persistent organic pollutants and prevalence of newly diagnosed hypertension: results from the National Health and Nutrition Examination Survey 1999-2002. J Hum Hypertens. 2009;23(4):274–86. https://doi.org/10.1038/jhh.2008.124.

    Article  CAS  PubMed  Google Scholar 

  36. Lee DH, Lind PM, Jacobs DR Jr, Salihovic S, van Bavel B, Lind L. Background exposure to persistent organic pollutants predicts stroke in the elderly. Environ Int. 2012;47:115–20. https://doi.org/10.1016/j.envint.2012.06.009.

    Article  CAS  PubMed  Google Scholar 

  37. Sjoberg LY, Lind PM, Salihovic S, van Bavel B, Lind L. Circulating levels of persistent organic pollutants (POPs) are associated with left ventricular systolic and diastolic dysfunction in the elderly. Environ Res. 2013;123:39–45. https://doi.org/10.1016/j.envres.2013.02.007.

    Article  CAS  Google Scholar 

  38. Arrebola JP, Fernandez MF, Martin-Olmedo P, Bonde JP, Martin-Rodriguez JL, Exposito J, et al. Historical exposure to persistent organic pollutants and risk of incident hypertension. Environ Res. 2015;138:217–23. https://doi.org/10.1016/j.envres.2015.02.018.

    Article  CAS  PubMed  Google Scholar 

  39. Ren A, Qiu X, Jin L, Ma J, Li Z, Zhang L, et al. Association of selected persistent organic pollutants in the placenta with the risk of neural tube defects. Proc Natl Acad Sci U S A. 2011;108(31):12770–5. https://doi.org/10.1073/pnas.1105209108.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tan J, Loganath A, Chong YS, Obbard JP. Exposure to persistent organic pollutants in utero and related maternal characteristics on birth outcomes: a multivariate data analysis approach. Chemosphere. 2009;74(3):428–33. https://doi.org/10.1016/j.chemosphere.2008.09.045.

    Article  CAS  PubMed  Google Scholar 

  41. Robledo CA, Yeung E, Mendola P, Sundaram R, Maisog J, Sweeney AM, et al. Preconception Maternal and Paternal Exposure to Persistent Organic Pollutants and Birth Size: The LIFE Study. Environ Health Perspect. 2015;123(1):88–94.

    Article  CAS  Google Scholar 

  42. Vafeiadi M, Vrijheid M, Fthenou E, Chalkiadaki G, Rantakokko P, Kiviranta H, et al. Persistent organic pollutants exposure during pregnancy, maternal gestational weight gain, and birth outcomes in the mother-child cohort in Crete, Greece (RHEA study). Environ Int. 2014;64:116–23. https://doi.org/10.1016/j.envint.2013.12.015.

    Article  CAS  PubMed  Google Scholar 

  43. Iszatt N, Stigum H, Verner MA, White RA, Govarts E, Murinova LP, et al. Prenatal and Postnatal Exposure to Persistent Organic Pollutants and Infant Growth: A Pooled Analysis of Seven European Birth Cohorts. Environ Health Perspect. 2015;123(7):730–6. https://doi.org/10.1289/ehp.1308005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vested A, Giwercman A, Bonde JP, Toft G. Persistent organic pollutants and male reproductive health. Asian Journal of Andrology. 2014;16(1):71–80. https://doi.org/10.4103/1008-682X.122345.

    Article  CAS  PubMed  Google Scholar 

  45. Warembourg C, Debost-Legrand A, Bonvallot N, Massart C, Garlantezec R, Monfort C, et al. Exposure of pregnant women to persistent organic pollutants and cord sex hormone levels. Hum Reprod. 2016;31(1):190–8. https://doi.org/10.1093/humrep/dev260.

    Article  CAS  PubMed  Google Scholar 

  46. Papadopoulou E, Vafeiadi M, Agramunt S, Mathianaki K, Karakosta P, Spanaki A, et al. Maternal diet, prenatal exposure to dioxins and other persistent organic pollutants and anogenital distance in children. Sci Total Environ. 2013;461-462:222–9. https://doi.org/10.1016/j.scitotenv.2013.05.005.

    Article  CAS  PubMed  Google Scholar 

  47. Vizcaino E, Grimalt JO, Glomstad B, Fernandez-Somoano A, Tardon A. Gestational weight gain and exposure of newborns to persistent organic pollutants. Environ Health Perspect. 2014;122(8):873–9. https://doi.org/10.1289/ehp.1306758.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hertz-Picciotto I, Park HY, Dostal M, Kocan A, Trnovec T, Sram R. Prenatal exposures to persistent and non-persistent organic compounds and effects on immune system development. Basic Clin Pharmacol Toxicol. 2008;102(2):146–54. https://doi.org/10.1111/j.1742-7843.2007.00190.x.

    Article  CAS  PubMed  Google Scholar 

  49. Kumar J, Lind PM, Salihovic S, van Bavel B, Ingelsson E, Lind L. Persistent organic pollutants and inflammatory markers in a cross-sectional study of elderly Swedish people: the PIVUS cohort. Environ Health Perspect. 2014;122(9):977–83. https://doi.org/10.1289/ehp.1307613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee DH, Jacobs DR, Kocher T. Associations of serum concentrations of persistent organic pollutants with the prevalence of periodontal disease and subpopulations of white blood cells. Environ Health Perspect. 2008;116(11):1558–62. https://doi.org/10.1289/ehp.11425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakai K, Suzuki K, Oka T, Murata K, Sakamoto M, Okamura K, et al. The Tohoku Study of Child Development: A cohort study of effects of perinatal exposures to methylmercury and environmentally persistent organic pollutants on neurobehavioral development in Japanese children. Tohoku J Exp Med. 2004;202(3):227–37. https://doi.org/10.1620/tjem.202.227.

    Article  PubMed  Google Scholar 

  52. Lee DH, Jacobs DR, Porta M. Association of serum concentrations of persistent organic pollutants with the prevalence of learning disability and attention deficit disorder. J Epidemiol Community Health. 2007;61(7):591–6. https://doi.org/10.1136/jech.2006.054700.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Berghuis SA, Bos AF, Sauer PJ, Roze E. Developmental neurotoxicity of persistent organic pollutants: an update on childhood outcome. Arch Toxicol. 2015;89(5):687–709. https://doi.org/10.1007/s00204-015-1463-3.

    Article  CAS  PubMed  Google Scholar 

  54. Gascon M, Verner MA, Guxens M, Grimalt JO, Forns J, Ibarluzea J, et al. Evaluating the neurotoxic effects of lactational exposure to persistent organic pollutants (POPs) in Spanish children. Neurotoxicology. 2013;34:9–15. https://doi.org/10.1016/j.neuro.2012.10.006.

    Article  CAS  PubMed  Google Scholar 

  55. Eskenazi B, Marks AR, Bradman A, Fenster L, Johnson C, Barr DB, et al. In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics. 2006;118(1):233–41. https://doi.org/10.1542/peds.2005-3117.

    Article  PubMed  Google Scholar 

  56. Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, Devito M, et al. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology program workshop review. Environ Health Perspect. 2013;121(7):774–83. https://doi.org/10.1289/ehp.1205502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee DH, Lee IK, Jin SH, Steffes M, Jacobs DR. Association Between Serum Concentrations of Persistent Organic Pollutants and Insulin Resistance Among Nondiabetic Adults: Results from the National Health and Nutrition Examination Survey 1999-2002. Diabetes Care. 2007;30(3):622–8. https://doi.org/10.2337/dc06-2190.

    Article  CAS  PubMed  Google Scholar 

  58. Damstra T. Potential effects of certain persistent organic pollutants and endocrine disrupting chemicals on the health of children. J Toxicol Clin Toxicol. 2002;40(4):457–65. https://doi.org/10.1081/CLT-120006748.

    Article  CAS  PubMed  Google Scholar 

  59. Lee DH, Porta M, Jacobs DR Jr, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev. 2014;35(4):557–601. https://doi.org/10.1210/er.2013-108410.1210/er.9013-1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Magliano DJ, Loh VH, Harding JL, Botton J, Shaw JE. Persistent organic pollutants and diabetes: a review of the epidemiological evidence. Diabetes Metab. 2014;40(1):1–14. https://doi.org/10.1016/j.diabet.2013.09.006.

    Article  CAS  PubMed  Google Scholar 

  61. Jaacks LM, Staimez LR. Association of persistent organic pollutants and non-persistent pesticides with diabetes and diabetes-related health outcomes in Asia: A systematic review. Environ Int. 2015;76:57–70. https://doi.org/10.1016/j.envint.2014.12.001.

    Article  CAS  PubMed  Google Scholar 

  62. Grindler NM, Allsworth JE, Macones GA, Kannan K, Roehl KA, Cooper AR. Persistent organic pollutants and early menopause in U.S. women. PLoS One. 2015;10(1):e0116057. https://doi.org/10.1371/journal.pone.0116057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gasull M, Pumarega J, Tellez-Plaza M, Castell C, Tresserras R, Lee DH, et al. Blood concentrations of persistent organic pollutants and prediabetes and diabetes in the general population of Catalonia. Environ Sci Technol. 2012;46(14):7799–810. https://doi.org/10.1021/es300712g.

    Article  CAS  PubMed  Google Scholar 

  64. Dirinck EL, Dirtu AC, Govindan M, Covaci A, Van Gaal LF, Jorens PG. Exposure to persistent organic pollutants: relationship with abnormal glucose metabolism and visceral adiposity. Diabetes Care. 2014;37(7):1951–8. https://doi.org/10.2337/dc13-2329.

    Article  CAS  PubMed  Google Scholar 

  65. Ngwa EN, Kengne AP, Tiedeu-Atogho B, Mofo-Mato EP, Sobngwi E. Persistent organic pollutants as risk factors for type 2 diabetes. Diabetol Metab Syndr. 2015;7(1):41. https://doi.org/10.1186/s13098-015-0031-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Suarez-Lopez JR, Lee DH, Porta M, Steffes MW, Jacobs DR Jr. Persistent organic pollutants in young adults and changes in glucose related metabolism over a 23-year follow-up. Environ Res. 2015;137:485–94. https://doi.org/10.1016/j.envres.2014.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turyk M, Fantuzzi G, Persky V, Freels S, Lambertino A, Pini M, et al. Persistent organic pollutants and biomarkers of diabetes risk in a cohort of Great Lakes sport caught fish consumers. Environ Res. 2015;140:335–44. https://doi.org/10.1016/j.envres.2015.03.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De Tata V. Association of dioxin and other persistent organic pollutants (POPs) with diabetes: epidemiological evidence and new mechanisms of beta cell dysfunction. Int J Mol Sci. 2014;15(5):7787–811. https://doi.org/10.3390/ijms15057787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vafeiadi M, Georgiou V, Chalkiadaki G, Rantakokko P, Kiviranta H, Karachaliou M, et al. Association of Prenatal Exposure to Persistent Organic Pollutants with Obesity and Cardiometabolic Traits in Early Childhood: The Rhea Mother-Child Cohort (Crete, Greece). Environ Health Perspect. 2015;123(10):1015–21. https://doi.org/10.1289/ehp.1409062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim KY, Kim DS, Lee SK, Lee IK, Kang JH, Chang YS, et al. Association of low-dose exposure to persistent organic pollutants with global DNA hypomethylation in healthy Koreans. Environ Health Perspect. 2010;118(3):370–4. https://doi.org/10.1289/ehp.0901131.

    Article  CAS  PubMed  Google Scholar 

  71. Huen K, Yousefi P, Bradman A, Yan L, Harley KG, Kogut K, et al. Effects of age, sex, and persistent organic pollutants on DNA methylation in children. Environ Mol Mutagen. 2014;55(3):209–22. https://doi.org/10.1002/em.21845.

    Article  CAS  PubMed  Google Scholar 

  72. Lind L, Penell J, Luttropp K, Nordfors L, Syvanen AC, Axelsson T, et al. Global DNA hypermethylation is associated with high serum levels of persistent organic pollutants in an elderly population. Environ Int. 2013;59:456–61. https://doi.org/10.1016/j.envint.2013.07.008.

    Article  CAS  PubMed  Google Scholar 

  73. Shin JY, Choi YY, Jeon HS, Hwang JH, Kim SA, Kang JH, et al. Low-dose persistent organic pollutants increased telomere length in peripheral leukocytes of healthy Koreans. Mutagenesis. 2010;25(5):511–6. https://doi.org/10.1093/mutage/geq035.

    Article  CAS  PubMed  Google Scholar 

  74. Mitra PS, Ghosh S, Zang S, Sonneborn D, Hertz-Picciotto I, Trnovec T, et al. Analysis of the toxicogenomic effects of exposure to persistent organic pollutants (POPs) in Slovakian girls: correlations between gene expression and disease risk. Environ Int. 2012;39(1):188–99. https://doi.org/10.1016/j.envint.2011.09.003.

    Article  CAS  PubMed  Google Scholar 

  75. Mitro S, Birnbaum L, Needham B, Zota A. Cross-sectional Associations between Exposure to Persistent Organic Pollutants and Leukocyte Telomere Length among U.S. Adults in NHANES, 2001–2002. Environ Health Perspect. 2016;124(5):651–8.

    Article  CAS  Google Scholar 

  76. Waalkes MP. Cadmium carcinogenesis in review. J Inorg Biochem. 2000;79(1-4):241–4. https://doi.org/10.1016/S0162-0134(00)00009-X.

    Article  CAS  PubMed  Google Scholar 

  77. Nawrot T, Plusquin M, Hogervorst J, Roels HA, Celis H, Thijs L, et al. Environmental exposure to cadmium and risk of cancer: a prospective population-based study. The Lancet Oncology. 2006;7(2):119–26. https://doi.org/10.1016/S1470-2045(06)70545-9.

    Article  CAS  PubMed  Google Scholar 

  78. McElroy JA, Shafer MM, Trentham-Dietz A, Hampton JM, Newcomb PA. Cadmium exposure and breast cancer risk. J Natl Cancer Inst. 2006;98(12):869–73. https://doi.org/10.1093/jnci/djj233.

    Article  CAS  PubMed  Google Scholar 

  79. Akesson A, Julin B, Wolk A. Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res. 2008;68(15):6435–41. https://doi.org/10.1158/0008-5472.CAN-08-0329.

    Article  CAS  PubMed  Google Scholar 

  80. Davison AG, Fayers PM, Taylor AJ, Venables KM, Darbyshire J, Pickering CA, et al. Cadmium fume inhalation and emphysema. Lancet. 1988;1(8587):663–7. https://doi.org/10.1016/S0140-6736(88)91474-2.

    Article  CAS  PubMed  Google Scholar 

  81. Schroeder HA. Cadmium as a factor in hypertension. J Chronic Dis. 1965;18(7):647–56. https://doi.org/10.1016/0021-9681(65)90066-4.

    Article  CAS  Google Scholar 

  82. Lemen RA, Lee JS, Wagoner JK, Blejer HP. Cancer Mortality among Cadmium Production Workers. Ann N Y Acad Sci. 1976;271(1):273–9. https://doi.org/10.1111/j.1749-6632.1976.tb23122.x.

    Article  CAS  PubMed  Google Scholar 

  83. Glauser SC, Bello CT, Glauser EM. Blood-cadmium levels in normotensive and untreated hypertensive humans. Lancet. 1976;1(7962):717–8. https://doi.org/10.1016/S0140-6736(76)93091-9.

    Article  CAS  PubMed  Google Scholar 

  84. Tellez-Plaza M, Navas-Acien A, Crainiceanu CM, Guallar E. Cadmium exposure and hypertension in the 1999-2004 National Health and Nutrition Examination Survey (NHANES). Environ Health Perspect. 2008;116(1):51–6. https://doi.org/10.1289/ehp.10764.

    Article  CAS  PubMed  Google Scholar 

  85. Buchet JP, Lauwerys R, Roels H, Bernard A, Bruaux P, Claeys F, et al. Renal effects of cadmium body burden of the general population. Lancet. 1990;336(8717):699–702. https://doi.org/10.1016/0140-6736(90)92201-R.

    Article  CAS  PubMed  Google Scholar 

  86. Jarup L, Hellstrom L, Alfven T, Carlsson MD, Grubb A, Persson B et al. Low level exposure to cadmium and early kidney damage: the OSCAR study. Occup Environ Med. 2000;57(10):668-72. doi:DOI 10.1136/oem.57.10.668.

  87. Akesson A, Lundh T, Vahter M, Bjellerup P, Lidfeldt J, Nerbrand C, et al. Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ Health Perspect. 2005;113(11):1627–31. https://doi.org/10.1289/ehp.8033.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Olsson IM, Bensryd I, Lundh T, Ottosson H, Skerfving S, Oskarsson A. Cadmium in blood and urine--impact of sex, age, dietary intake, iron status, and former smoking--association of renal effects. Environ Health Perspect. 2002;110(12):1185–90. https://doi.org/10.1289/ehp.021101185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roels HA, Lauwerys RR, Buchet JP, Bernard A. Environmental exposure to cadmium and renal function of aged women in three areas of Belgium. Environ Res. 1981;24(1):117–30. https://doi.org/10.1016/0013-9351(81)90138-9.

    Article  CAS  PubMed  Google Scholar 

  90. Navas-Acien A, Tellez-Plaza M, Guallar E, Muntner P, Silbergeld E, Jaar B, et al. Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis. Am J Epidemiol. 2009;170(9):1156–64. https://doi.org/10.1093/aje/kwp248.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M. Health effects of cadmium exposure--a review of the literature and a risk estimate. Scand J Work Environ Health. 1998;24(Suppl 1):1–51.

    PubMed  Google Scholar 

  92. Satarug S, Moore MR. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect. 2004;112(10):1099–103. https://doi.org/10.1289/ehp.6751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Satarug S, Garrett SH, Sens MA, Sens DA. Cadmium, environmental exposure, and health outcomes. Environ Health Perspect. 2010;118(2):182–90. https://doi.org/10.1289/ehp.0901234.

    Article  CAS  PubMed  Google Scholar 

  94. Staessen JA, Roels HA, Emelianov D, Kuznetsova T, Thijs L, Vangronsveld J, et al. Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Public Health and Environmental Exposure to Cadmium (PheeCad) Study Group. Lancet. 1999;353(9159):1140–4. https://doi.org/10.1016/S0140-6736(98)09356-8.

    Article  CAS  PubMed  Google Scholar 

  95. Kjellstrom T. Mechanism and epidemiology of bone effects of cadmium. IARC Sci Publ. 1992;118:301–10.

    Google Scholar 

  96. Akesson A, Bjellerup P, Lundh T, Lidfeldt J, Nerbrand C, Samsioe G, et al. Cadmium-induced effects on bone in a population-based study of women. Environ Health Perspect. 2006;114(6):830–4. https://doi.org/10.1289/ehp.8763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Alfven T, Elinder CG, Carlsson MD, Grubb A, Hellstrom L, Persson B, et al. Low-level cadmium exposure and osteoporosis. J Bone Miner Res. 2000;15(8):1579–86. https://doi.org/10.1359/jbmr.2000.15.8.1579.

    Article  CAS  PubMed  Google Scholar 

  98. Jarup L, Alfven T. Low level cadmium exposure, renal and bone effects--the OSCAR study. Biometals. 2004;17(5):505–9. https://doi.org/10.1023/B:BIOM.0000045729.68774.a1.

    Article  PubMed  Google Scholar 

  99. Schwartz GG, Il'yasova D, Ivanova A. Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. Diabetes Care. 2003;26(2):468–70. https://doi.org/10.2337/diacare.26.2.468 %J Diabetes Care.

  100. Edwards JR, Prozialeck WC. Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol. 2009;238(3):289–93. https://doi.org/10.1016/j.taap.2009.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Henson MC, Chedrese PJ. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Experimental Biology and Medicine (Maywood, NJ). 2004;229(5):383–92. https://doi.org/10.1177/153537020422900506.

    Article  CAS  Google Scholar 

  102. Frery N, Nessmann C, Girard F, Lafond J, Moreau T, Blot P, et al. Environmental exposure to cadmium and human birthweight. Toxicology. 1993;79(2):109–18. https://doi.org/10.1016/0300-483X(93)90124-B.

    Article  CAS  PubMed  Google Scholar 

  103. Thatcher R, Lester M, Mcalaster R, Horst R. Effects of Low Levels of Cadmium and Lead on Cognitive Functioning in Children. Archives of Environmental Health. 1982;37(3):159-66. doi:Archives of Environmental Health: An International Journal, Vol. 37, No. 3, May 1982: pp. 159–166.

  104. Nishijo M, Nakagawa H, Honda R, Tanebe K, Saito S, Teranishi H et al. Effects of maternal exposure to cadmium on pregnancy outcome and breast milk. Occup Environ Med. 2002;59(6):394-6; discussion 7. doi:DOI 10.1136/oem.59.6.394.

  105. Gennart JP, Buchet JP, Roels H, Ghyselen P, Ceulemans E, Lauwerys R. Fertility of male workers exposed to cadmium, lead, or manganese. Am J Epidemiol. 1992;135(11):1208–19. https://doi.org/10.1093/oxfordjournals.aje.a116227.

    Article  CAS  PubMed  Google Scholar 

  106. Kurttio P, Auvinen A, Salonen L, Saha H, Pekkanen J, Makelainen I, et al. Renal effects of uranium in drinking water. Environ Health Perspect. 2002;110(4):337–42. https://doi.org/10.1289/ehp.02110337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zamora ML, Tracy BL, Zielinski JM, Meyerhof DP, Moss MA. Chronic ingestion of uranium in drinking water: a study of kidney bioeffects in humans. Toxicol Sci. 1998;43(1):68–77. https://doi.org/10.1006/toxs.1998.2426.

    Article  CAS  PubMed  Google Scholar 

  108. Archer VE, Wagoner JK, Lundin FE. Lung Cancer Among Uranium Miners in the United States : Health Physics. Health Phys. 1973;25(4).

  109. Hornung RW, Meinhardt TJ. Quantitative risk assessment of lung cancer in U.S. uranium miners. Health Phys. 1987;52(4):417–30. https://doi.org/10.1097/00004032-198704000-00002.

    Article  CAS  PubMed  Google Scholar 

  110. Archer VE, Gillam JD, Wagoner JK. Respiratory Disease Mortality among Uranium Miners. Ann N Y Acad Sci. 1976;271(1):280–93. https://doi.org/10.1111/j.1749-6632.1976.tb23123.x.

    Article  CAS  PubMed  Google Scholar 

  111. Sevc J, Kunz E, Placek V. Lung cancer in uranium miners and long-term exposure to radon daughter products. Health Phys. 1976;30(6):433–7.

    Article  CAS  Google Scholar 

  112. Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H. Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Perspect 2005;113(1):68-72. doi:https://doi.org/10.1289/ehp.747510.1289/ehp.7475.

  113. McDiarmid MA, Keogh JP, Hooper FJ, McPhaul K, Squibb K, Kane R, et al. Health effects of depleted uranium on exposed Gulf War veterans. Environ Res. 2000;82(2):168–80. https://doi.org/10.1006/enrs.1999.4012.

    Article  CAS  PubMed  Google Scholar 

  114. Uzzell BP, Oler J. Chronic Low-Level mercury exposure and neuropsychological functioning. http://dxdoiorg/101080/01688638608405177. 2008. doi. J Clin Exp Neuropsychol. October 1986;8(5):581–93.

    Article  CAS  Google Scholar 

  115. Soleo L, Urbano ML, Petrera V, Ambrosi L. Effects of low exposure to inorganic mercury on psychological performance. Br J Ind Med. 1990;47(2):105–9. https://doi.org/10.1136/oem.47.2.105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cohen JT, Bellinger DC, Shaywitz BA. A quantitative analysis of prenatal methyl mercury exposure and cognitive development. Am J Prev Med. 2005;29(4):353–65. https://doi.org/10.1016/j.amepre.2005.06.007.

    Article  PubMed  Google Scholar 

  117. Albers JW, Kallenbach LR, Fine LJ, Langolf GD, Wolfe RA, Donofrio PD, et al. Neurological abnormalities associated with remote occupational elemental mercury exposure. Ann Neurol. 1988;24(5):651–9. https://doi.org/10.1002/ana.410240510.

    Article  CAS  PubMed  Google Scholar 

  118. Rowland AS, Baird DD, Weinberg CR, Shore DL, Shy CM, Wilcox AJ. The effect of occupational exposure to mercury vapour on the fertility of female dental assistants. Occup Environ Med. 1994;51(1):28–34. https://doi.org/10.1136/oem.51.1.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cordier S, Deplan F, Mandereau L, Hemon D. Paternal exposure to mercury and spontaneous abortions. Br J Ind Med. 1991;48(6):375–81. https://doi.org/10.1136/oem.48.6.375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mozaffarian D, Shi P, Morris JS, Spiegelman D, Grandjean P, Siscovick DS, et al. Mercury exposure and risk of cardiovascular disease in two U.S. cohorts. N Engl J Med. 2011;364(12):1116–25. https://doi.org/10.1056/NEJMoa1006876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fillion M, Mergler D, Sousa Passos CJ, Larribe F, Lemire M, Guimaraes JR. A preliminary study of mercury exposure and blood pressure in the Brazilian Amazon. Environ Health. 2006;5(1):29. https://doi.org/10.1186/1476-069X-5-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. https://doi.org/10.1371/journal.pmed.1000100.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Aminov Z, Haase R, Carpenter DO. Diabetes in Native Americans: elevated risk as a result of exposure to polychlorinated biphenyls (PCBs). Rev Environ Health. 2016;31(1):115–9. https://doi.org/10.1515/reveh-2015-0054.

    Article  CAS  PubMed  Google Scholar 

  124. Aminov Z, Haase R, Rej R, Schymura MJ, Santiago-Rivera A, Morse G, et al. Diabetes Prevalence in Relation to Serum Concentrations of Polychlorinated Biphenyl (PCB) Congener Groups and Three Chlorinated Pesticides in a Native American Population. Environ Health Perspect. 2016;124(9):1376–83. https://doi.org/10.1289/ehp.1509902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Grice BA, Nelson RG, Williams DE, Knowler WC, Mason C, Hanson RL, et al. Associations between persistent organic pollutants, type 2 diabetes, diabetic nephropathy and mortality. Occup Environ Med. 2017;74(7):521–7. https://doi.org/10.1136/oemed-2016-103948.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Newman J, Behforooz B, Khuzwayo AG, Gallo MV, Schell LM. Akwesasne Task Force on the E. PCBs and ADHD in Mohawk adolescents. Neurotoxicol Teratol. 2014;42:25–34. https://doi.org/10.1016/j.ntt.2014.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schell LM, Gallo MV, Deane GD, Nelder KR, DeCaprio AP, Jacobs A et al. Relationships of polychlorinated biphenyls and dichlorodiphenyldichloroethylene (p,p'-DDE) with testosterone levels in adolescent males. Environ Health Perspect 2014;122(3):304-309. doi:https://doi.org/10.1289/ehp.1205984.

  128. Byrne SC, Miller P, Seguinot-Medina S, Waghiyi V, Buck CL, von Hippel FA, et al. Associations between serum polybrominated diphenyl ethers and thyroid hormones in a cross sectional study of a remote Alaska Native population. Sci Rep. 2018;8(1):2198. https://doi.org/10.1038/s41598-018-20443-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Codru N, Schymura MJ, Negoita S. Akwesasne Task Force on E, Rej R, Carpenter DO. Diabetes in relation to serum levels of polychlorinated biphenyls and chlorinated pesticides in adult Native Americans. Environ Health Perspect. 2007;115(10):1442–7. https://doi.org/10.1289/ehp.10315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fitzgerald EF, Hwang SA, Lambert G, Gomez M, Tarbell A. PCB exposure and in vivo CYP1A2 activity among Native Americans. Environ Health Perspect. 2005;113(3):272–7. https://doi.org/10.1289/ehp.7370.

    Article  CAS  PubMed  Google Scholar 

  131. Gallo MV. Ravenscroft J, Carpenter DO, Frye C, Akwesasne Task Force on the Environment n, Cook B et al. Endocrine disrupting chemicals and ovulation: Is there a relationship? Environ Res. 2016;151:410–8. https://doi.org/10.1016/j.envres.2016.08.007.

    Article  CAS  PubMed  Google Scholar 

  132. Gallo MV, Ravenscroft J, Carpenter DO, Schell LM, Akwesasne Task Force On The E. Persistent organic pollutants as predictors of increased FSH:LH ratio in naturally cycling, reproductive age women. Environmental research. 2018;164:556-64. doi:10.1016/j.envres.2018.03.021.

  133. Goncharov A, Rej R, Negoita S, Schymura M, Santiago-Rivera A, Morse G, et al. Lower serum testosterone associated with elevated polychlorinated biphenyl concentrations in Native American men. Environ Health Perspect. 2009;117(9):1454–60. https://doi.org/10.1289/ehp.0800134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Holmes AK, Koller KR, Kieszak SM, Sjodin A, Calafat AM, Sacco FD, et al. Case-control study of breast cancer and exposure to synthetic environmental chemicals among Alaska Native women. International Journal of Circumpolar Health. 2014;73:25760.

    Article  Google Scholar 

  135. Newman J, Aucompaugh AG, Schell LM, Denham M, DeCaprio AP, Gallo MV, et al. PCBs and cognitive functioning of Mohawk adolescents. Neurotoxicol Teratol. 2006;28(4):439–45. https://doi.org/10.1016/j.ntt.2006.03.001.

    Article  CAS  PubMed  Google Scholar 

  136. Newman J, Gallo MV, Schell LM, DeCaprio AP, Denham M, Deane GD, et al. Analysis of PCB congeners related to cognitive functioning in adolescents. Neurotoxicology. 2009;30(4):686–96. https://doi.org/10.1016/j.neuro.2009.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Santiago-Rivera AL, Morse GS, Haase RF, McCaffrey RJ, Tarbell A. Exposure to an environmental toxin, quality of life and psychological distress. J Environ Psychol. 2007;27(1):33–43. https://doi.org/10.1016/j.jenvp.2006.12.004.

    Article  Google Scholar 

  138. Schell LM, Gallo MV, Denham M, Ravenscroft J, DeCaprio AP, Carpenter DO. Relationship of thyroid hormone levels to levels of polychlorinated biphenyls, lead, p,p'- DDE, and other toxicants in Akwesasne Mohawk youth. Environ Health Perspect 2008;116(6):806-813. doi:https://doi.org/10.1289/ehp.10490.

  139. Schell LM, Gallo MV, Ravenscroft J, DeCaprio AP. Persistent organic pollutants and anti-thyroid peroxidase levels in Akwesasne Mohawk young adults. Environ Res. 2009;109(1):86–92. https://doi.org/10.1016/j.envres.2008.08.015.

    Article  CAS  PubMed  Google Scholar 

  140. Denham M, Schell LM, Deane G, Gallo MV, Ravenscroft J, DeCaprio AP, et al. Relationship of lead, mercury, mirex, dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyls to timing of menarche among Akwesasne Mohawk girls. Pediatrics. 2005;115(2):e127–34. https://doi.org/10.1542/peds.2004-1161.

    Article  PubMed  Google Scholar 

  141. Rubin CH, Lanier A, Kieszak S, Brock JW, Koller KR, Strosnider H et al. Breast cancer among Alaska Native women potentially exposed to environmental organochlorine chemicals. International Journal of Circumpolar Health. 2006;65(1):18-27. doi:DOI 10.3402/ijch.v65i1.17885.

  142. Franceschini N, Fry RC, Balakrishnan P, Navas-Acien A, Oliver-Williams C, Howard AG, et al. Cadmium body burden and increased blood pressure in middle-aged American Indians: the Strong Heart Study. J Hum Hypertens. 2017;31(3):225–30. https://doi.org/10.1038/jhh.2016.67.

    Article  CAS  PubMed  Google Scholar 

  143. Garcia-Esquinas E, Pollan M, Tellez-Plaza M, Francesconi KA, Goessler W, Guallar E, et al. Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study. Environ Health Perspect. 2014;122(4):363–70. https://doi.org/10.1289/ehp.1306587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tellez-Plaza M, Guallar E, Fabsitz RR, Howard BV, Umans JG, Francesconi KA, et al. Cadmium exposure and incident peripheral arterial disease. Circulation Cardiovascular Quality and Outcomes. 2013;6(6):626–33. https://doi.org/10.1161/CIRCOUTCOMES.112.000134.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Tellez-Plaza M, Guallar E, Howard BV, Umans JG, Francesconi KA, Goessler W, et al. Cadmium exposure and incident cardiovascular disease. Epidemiology. 2013;24(3):421–9. https://doi.org/10.1097/EDE.0b013e31828b0631.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Oliver-Williams C, Howard AG, Navas-Acien A, Howard BV, Tellez-Plaza M, Franceschini N. Cadmium body burden, hypertension, and changes in blood pressure over time: results from a prospective cohort study in American Indians. Journal of the American Society of Hypertension : JASH. 2018;12(6):426–37 e9. https://doi.org/10.1016/j.jash.2018.03.002.

    Article  CAS  PubMed  Google Scholar 

  147. Lee ET, Welty TK, Fabsitz R, Cowan LD, Le NA, Oopik AJ, et al. The Strong Heart Study. A study of cardiovascular disease in American Indians: design and methods. Am J Epidemiol. 1990;132(6):1141–55. https://doi.org/10.1093/oxfordjournals.aje.a115757.

    Article  CAS  PubMed  Google Scholar 

  148. Harmon ME, Lewis J, Miller C, Hoover J, Ali AS, Shuey C, et al. Residential proximity to abandoned uranium mines and serum inflammatory potential in chronically exposed Navajo communities. Journal of Exposure Science & Environmental Epidemiology. 2017;27(4):365–71. https://doi.org/10.1038/jes.2016.79.

    Article  CAS  Google Scholar 

  149. Hund L, Bedrick EJ, Miller C, Huerta G, Nez T, Ramone S, et al. A Bayesian framework for estimating disease risk due to exposure to uranium mine and mill waste on the Navajo Nation. Journal of the Royal Statistical Society Series a-Statistics in Society. 2015;178(4):1069–91. https://doi.org/10.1111/rssa.12099.

    Article  Google Scholar 

  150. Dashner-Titus EJ, Hoover J, Li L, Lee JH, Du R, Liu KJ, et al. Metal exposure and oxidative stress markers in pregnant Navajo Birth Cohort Study participants. Free Radic Biol Med. 2018;124:484–92. https://doi.org/10.1016/j.freeradbiomed.2018.04.579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shields LM, Wiese WH, Skipper BJ, Charley B, Benally L. Navajo birth outcomes in the Shiprock uranium mining area. Health Phys. 1992;63(5):542–51.

    Article  CAS  Google Scholar 

  152. Ong J, Erdei E, Rubin RL, Miller C, Ducheneaux C, O'Leary M, et al. Mercury, autoimmunity, and environmental factors on cheyenne river sioux tribal lands. Autoimmune Dis. 2014;2014:325461. https://doi.org/10.1155/2014/325461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gilbreath S, Kass PH. Adverse birth outcomes associated with open dumpsites in Alaska Native Villages. Am J Epidemiol. 2006;164(6):518–28. https://doi.org/10.1093/aje/kwj241.

    Article  PubMed  Google Scholar 

  154. Gilbreath S, Kass PH. Fetal and neonatal deaths and congenital anomalies associated with open dumpsites in Alaska Native villages. International Journal of Circumpolar Health. 2006;65(2):133–47.

    Article  Google Scholar 

  155. Gribble MO, Around Him DM. Ethics and Community Involvement in Syntheses Concerning American Indian, Alaska Native, or Native Hawaiian Health: A Systematic Review. AJOB Empirical Bioethics. 2014;5(2):1–24. https://doi.org/10.1080/21507716.2013.848956.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sedgwick P. Bias in observational study designs: case-control studies. BMJ [British Medical Journal]. 2015;350:h560. https://doi.org/10.1136/bmj.h560.

    Article  Google Scholar 

  157. Whittle J. Most Native Americans live in cities, not reservations. The Guardian: Here are their stories; 2017.

    Google Scholar 

  158. Sarigiannis DA, Hansen U. Considering the cumulative risk of mixtures of chemicals - a challenge for policy makers. Environ Health. 2012;11 Suppl 1(Suppl 1):S18. doi:10.1186/1476-069X-11-S1-S18.

  159. Hooks G, Smith CL. The treadmill of destruction: National sacrifice areas and Native Americans. Am Sociol Rev. 2004;69(4):558-75. doi:Doi 10.1177/000312240406900405.

  160. Endres D. Sacred Land or National Sacrifice Zone: The Role of Values in the Yucca Mountain Participation Process. Environ Commun. 2012;6(3):328–45. https://doi.org/10.1080/17524032.2012.688060.

    Article  Google Scholar 

  161. Ishiyama N. Environmental Justice and American Indian Tribal Sovereignty: Case Study of a Land–Use Conflict in Skull Valley, Utah. Antipode. 2003;35(1):119-39. doi:doi:10.1111/1467-8330.00305.

  162. Burhansstipanov L, Satter DE. Office of Management and Budget racial categories and implications for American Indians and Alaska Natives. Am J Public Health. 2000;90(11):1720–3. https://doi.org/10.2105/ajph.90.11.1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sarche M, Spicer P. Poverty and health disparities for American Indian and Alaska Native children: current knowledge and future prospects. Ann N Y Acad Sci. 2008;1136:126–36. https://doi.org/10.1196/annals.1425.017.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sequist TD, Cullen T, Bernard K, Shaykevich S, Orav EJ, Ayanian JZ. Trends in quality of care and barriers to improvement in the Indian Health Service. J Gen Intern Med. 2011;26(5):480–6. https://doi.org/10.1007/s11606-010-1594-4.

    Article  PubMed  Google Scholar 

  165. Smedley BD, Stith AY, Nelson AR. The rationing of healthcare and health disparity for the American Indians/Alaska Natives. Unequal treatment: Confronting racial and ethnic disparities in health care. National Academies Press (US); 2003.

  166. Profile: American Indian/Alaska Native. U.S. Department of Health and Human Services Office of Minority Health. 2018. https://minorityhealth.hhs.gov/omh/browse.aspx?lvl=3&lvlID=62.

  167. Link BG, Phelan J. Social conditions as fundamental causes of disease. J Health Soc Behav. 1995;Spec No:80-94.

  168. Glenn EN. Settler Colonialism as Structure:A Framework for Comparative Studies of U.S. Race and Gender Formation. Sociology of Race and Ethnicity. 2015;1(1):52–72. https://doi.org/10.1177/2332649214560440.

    Article  Google Scholar 

  169. Norgaard KM, Reed R, Bacon JM. How Environmental Decline Restructures Indigenous Gender Practices: What Happens to Karuk Masculinity When There Are No Fish? Sociology of Race and Ethnicity. 2018;4(1):98–113. https://doi.org/10.1177/2332649217706518.

    Article  Google Scholar 

  170. Norgaard KM. Salmon and Acorns Feed Our People: Colonialism, Nature & Social Action. New Brunswick, NJ: Rutgers University Press; 2019.

    Book  Google Scholar 

  171. Booth AL, Jacobs HM. Ties That Bind - Native-American Beliefs as a Foundation for Environmental Consciousness. Environ Ethics. 1990;12(1):27–43. https://doi.org/10.5840/enviroethics199012114.

    Article  Google Scholar 

  172. Vickery J, Hunter LM. Native Americans: Where in Environmental Justice Research? Soc Nat Resour. 2016;29(1):36–52. https://doi.org/10.1080/08941920.2015.1045644.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GYM conceptualized the study, performed the literature search, conducted the analysis, and drafted the manuscript. BXW also conceptualized the study and performed the systematic search. JTZ, DV, and BBA added points of importance and critically revised the work.

Corresponding author

Correspondence to Gabriella Y. Meltzer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14.6 kb)

ESM 2

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meltzer, G.Y., Watkins, BX., Vieira, D. et al. A Systematic Review of Environmental Health Outcomes in Selected American Indian and Alaska Native Populations. J. Racial and Ethnic Health Disparities 7, 698–739 (2020). https://doi.org/10.1007/s40615-020-00700-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40615-020-00700-2

Keywords

Navigation