The R package beezdemand: Behavioral Economic Easy Demand

Abstract

beezdemand: Behavioral Economic Easy Demand, a novel package for performing behavioral economic analyses, is introduced and evaluated. beezdemand extends the statistical program to facilitate many of the analyses performed in studies of behavioral economic demand. The package supports commonly used options for modeling operant demand and performs data screening, fits models of demand, and calculates numerous measures relevant to applied behavioral economists. The free and open source beezdemand package is compared to commercially available software (i.e., GraphPad Prism™) using peer-reviewed and simulated data. The results of this study indicated that beezdemand provides results consistent with commonly used commercial software but provides a wider range of methods and functionality desirable to behavioral economic researchers. A brief overview of the package is presented, its functionality is demonstrated, and considerations for its use are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    Although the term “method(s)” would also be appropriate here, we use the term “function(s)” to maintain consistent nomenclature within R Statistical Software.

  2. 2.

    A “data frame” in R nomenclature can be most easily thought of as a table, or as a single Microsoft Excel worksheet.

  3. 3.

    We note that 0.5 is the default value, but that beezdemand allows the user to specify the value of this added constant, and that future updates to the package will reflect the current state of best practices in the literature.

References

  1. Amazon Mechanical Turk. (n.d.). [Computer software]. Retrieved from https://www.mturk.com

  2. Aston, E. R., Metrik, J., Amlung, M., Kahler, C. W., & MacKillop, J. (2016). Interrelationships between marijuana demand and discounting of delayed rewards: Convergence in behavioral economic methods. Drug & Alcohol Dependence, 169, 141–147. https://doi.org/10.1016/j.drugalcdep.2016.10.014.

    Article  Google Scholar 

  3. Aston, E. R., Metrik, J., & MacKillop, J. (2015). Further validation of a marijuana purchase task. Drug & Alcohol Dependence, 152, 32–38. https://doi.org/10.1016/j.drugalcdep.2015.04.025.

    Article  Google Scholar 

  4. Baum, W. M. (1974). On two types of deviation from the matching law: Bias and undermatching. Journal of the Experimental Analysis of Behavior, 22(1), 231–242. https://doi.org/10.1901/jeab.1974.22-231.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bickel, W. K., DeGrandpre, R. J., & Higgins, S. T. (1993). Behavioral economics: a novel experimental approach to the study of drug dependence. Drug & Alcohol Dependence, 33(2), 173–192. https://doi.org/10.1016/0376-8716(93)90059-Y.

    Article  Google Scholar 

  6. Bickel, W. K., DeGrandpre, R. J., Hughes, J. R., & Higgins, S. T. (1991). Behavioral economics of drug self-administration. II. A unit-price analysis of cigarette smoking. Journal of the Experimental Analysis of Behavior, 55(2), 145–154. https://doi.org/10.1901/jeab.1991.55-145.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bickel, W. K., Johnson, M. W., Koffarnus, M. N., MacKillop, J., & Murphy, J. G. (2014). The behavioral economics of substance use disorders: Reinforcement pathologies and their repair. Annual Review of Clinical Psychology, 10(10), 641–677. https://doi.org/10.1146/annurev-clinpsy-032813-153724.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bickel, W. K., Madden, G. J., & Petry, N. M. (1998). The price of change: The behavioral economics of drug dependence. Behavior Therapy, 29(4), 545–565. https://doi.org/10.1016/S0005-7894(98)80050-6.

    Article  Google Scholar 

  9. Bickel, W. K., Marsch, L. A., & Carroll, M. E. (2000). Deconstructing relative reinforcing efficacy and situating the measures of pharmacological reinforcement with behavioral economics: A theoretical proposal. Psychopharmacology, 153(1), 44–56.

    Article  Google Scholar 

  10. Bickel, W. K., Odum, A. L., & Madden, G. J. (1999). Impulsivity and cigarette smoking: Delay discounting in current, never, and ex-smokers. Psychopharmacology, 146(4), 447–454. https://doi.org/10.1007/PL00005490.

    Article  PubMed  Google Scholar 

  11. Bickel, W. K., & Vuchinich, R. E. (2000). Reframing health behavior change with behavioral economics. Mahwah, NJ: Erlbaum.

    Book  Google Scholar 

  12. Bidwell, L. C., MacKillop, J., Murphy, J. G., Tidey, J. W., & Colby, S. M. (2012). Latent factor structure of a behavioral economic cigarette demand curve in adolescent smokers. Addictive Behaviors, 37(11), 1257–1263. https://doi.org/10.1016/j.addbeh.2012.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bruner, N. R., & Johnson, M. W. (2014). Demand curves for hypothetical cocaine in cocaine-dependent individuals. Psychopharmacology, 231(5), 889–897. https://doi.org/10.1007/s00213-013-3312-5.

    Article  PubMed  Google Scholar 

  14. Epstein, L. H. (1995). Application of behavioral economic principles to treatment of childhood obesity. In D. B. Allison & F. X. Pi-Sunyer (Eds.), Obesity treatment: Establishing goals, improving outcomes, and reviewing the research agenda (pp. 113–119). Boston, MA: Springer.

    Chapter  Google Scholar 

  15. Epstein, L. H., Dearing, K. K., Roba, L. G., & Finkelstein, E. (2010). The influence of taxes and subsidies on energy purchased in an experimental purchasing study. Psychological Science, 21(3), 406–414. https://doi.org/10.1177/0956797610361446.

    Article  PubMed  Google Scholar 

  16. Epstein, L. H., Paluch, R. A., Carr, K. A., Temple, J. L., Bickel, W. K., & MacKillop, J. (2018). Reinforcing value and hypothetical behavioral economic demand for food and their relation to BMI. Eating Behaviors, 29, 120–127.

    Article  Google Scholar 

  17. Epstein, L. H., & Saelens, B. E. (2000). Behavioral economics of obesity: Food intake and energy expenditure. In W. K. Bickel & R. E. Vuchinich (Eds.), Reframing health behavior change with behavioral economics (pp. 293–311). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  18. Foxall, G. R., Olivera-Castro, J., Schrezenmaier, T., & James, V. (2007). The behavioral economics of brand choice. London and New York: Palgrave Macmillan.

    Book  Google Scholar 

  19. Foxall, G. R., Wells, V. K., Chang, S. W., & Oliveira-Castro, J. M. (2010). Substitutability and independence: Matching analyses of brands and products. Journal of Organizational Behavior Management, 30(2), 145–160. https://doi.org/10.1080/01608061003756414.

    Article  Google Scholar 

  20. Gilroy, S. P., Franck, C. T., & Hantula, D. A. (2017). The discounting model selector: Statistical software for delay discounting applications. Journal of the Experimental Analysis of Behavior, 107, 388–401. https://doi.org/10.1002/jeab.257.

    Article  PubMed  Google Scholar 

  21. Gilroy, S. P., Kaplan, B. A., & Leader, G. (2018a). A systematic review of applied behavioral economics in assessments and treatments for individuals with developmental disabilities. Review Journal of Autism & Developmental Disorders, 5(3), 247–259. https://doi.org/10.1007/s40489-018-0136-6.

    Article  Google Scholar 

  22. Gilroy, S. P., Kaplan, B. A., Reed, D. D., Koffarnus, M. N., & Hantula, D. A. (2018b). The Demand Curve Analyzer: Behavioral economic software for applied researchers. Journal of the Experimental Analysis of Behavior. https://doi.org/10.1002/jeab.479.

  23. GitHub. (n.d.). beezdemand. [Computer software]. Retrieved from https://github.com/brentkaplan/beezdemand

  24. Grace, R. C., Kivell, B. M., & Laugesen, M. (2014). Estimating cross-price elasticity of e-cigarettes using a simulated demand procedure. Nicotine & Tobacco Research, 17(5), 592–598.

    Article  Google Scholar 

  25. Greenwald, M. K. (2010). Effects of experimental Unemployment, Employment and Punishment analogs on opioid seeking and consumption in heroin-dependent volunteers. Drug & Alcohol Dependence, 111(1–2), 64–73. https://doi.org/10.1016/j.drugalcdep.2010.03.020.

    Article  Google Scholar 

  26. Greenwald, M. K., & Hursh, S. R. (2006). Behavioral economic analysis of opioid consumption in heroin-dependent individuals: Effects of unit price and pre-session drug supply. Drug & Alcohol Dependence, 85(1), 35–48. https://doi.org/10.1016/j.drugalcdep.2006.03.007.

    Article  Google Scholar 

  27. Greenwald, M. K., & Steinmiller, C. L. (2009). Behavioral economic analysis of opioid consumption in heroin-dependent individuals: Effects of alternative reinforcer magnitude and post-session drug supply. Drug & Alcohol Dependence, 104(1–2), 84–93. https://doi.org/10.1016/j.drugalcdep.2009.04.006.

    Article  Google Scholar 

  28. Grothendieck, G. (2013). nls2: Non-linear regression with brute force (Version 0.2). [Computer software].

  29. Henley, A. J., DiGennaro Reed, F. D., Kaplan, B. A., & Reed, D. D. (2016a). Quantifying efficacy of workplace reinforcers: An application of behavioral economic demand to evaluate hypothetical work performance. Translational Issues in Psychological Science, 2(2), 174–183.

    Article  Google Scholar 

  30. Henley, A. J., DiGennaro Reed, F. D., Reed, D. D., & Kaplan, B. A. (2016b). A crowdsourced nickel-and-dime approach to analog OBM research: A behavioral economic framework for understanding workforce attrition. Journal of the Experimental Analysis of Behavior, 106(2), 134–144. https://doi.org/10.1002/jeab.220.

    Article  PubMed  Google Scholar 

  31. Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4, 267–272. https://doi.org/10.1901/jeab.1961.4-267.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hursh, S. R. (1978). The economics of daily consumption controlling food- and water-reinforced responding. Journal of the Experimental Analysis of Behavior, 29(3), 475–491. https://doi.org/10.1901/jeab.1978.29-475.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hursh, S. R. (1980). Economic concepts for the analysis of behavior. Journal of the Experimental Analysis of Behavior, 34(2), 219–238. https://doi.org/10.1901/jeab.1980.34-219.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hursh, S. R. (1984). Behavioral economics. Journal of the Experimental Analysis of Behavior, 42(3), 435–452. https://doi.org/10.1901/jeab.1984.42-435.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hursh, S. R. (1991). Behavioral economics of drug self-administration and drug abuse policy. Journal of the Experimental Analysis of Behavior, 56(2), 377–393. https://doi.org/10.1901/jeab.1991.56-377.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hursh, S. R. (2014). Behavioral economics and the analysis of consumption and choice. In F. K. McSweeney & E. S. Murphy (Eds.), The Wiley Blackwell handbook of operant and classical conditioning (pp. 275–305). West Sussex, UK: Wiley.

    Chapter  Google Scholar 

  37. Hursh, S. R., & Bauman, R. A. (1987). The behavioral analysis of demand. In L. Green & J. H. Kagel (Eds.), Advances in behavioral economics (Vol. 1, pp. 117–165). Norwood, NJ: Ablex Publishing Company.

    Google Scholar 

  38. Hursh, S. R., Raslear, T. G., Bauman, R., & Black, H. (1989). The quantitative analysis of economic behavior with laboratory animals. In K. G. Grunert & F. Ölander (Eds.), Understanding economic behaviour (pp. 393–407). Dordrecht, The Netherlands: Springer Netherlands.

    Chapter  Google Scholar 

  39. Hursh, S. R., Raslear, T. G., Shurtleff, D., Bauman, R., & Simmons, L. (1988). A cost-benefit analysis of demand for food. Journal of the Experimental Analysis of Behavior, 50(3), 419–440. https://doi.org/10.1901/jeab.1988.50-419.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hursh, S. R., & Roma, P. G. (2013). Behavioral economics and empirical public policy. Journal of the Experimental Analysis of Behavior, 99(1), 98–124. https://doi.org/10.1002/jeab.7.

    Article  PubMed  Google Scholar 

  41. Hursh, S. R., & Roma, P. G. (2014). Exponential model of demand in GraphPad Prism. [Software template]. Retrieved from: https://ibrinc.org/software/

  42. Hursh, S. R., & Silberberg, A. (2008). Economic demand and essential value. Psychological Review, 115(1), 186–198. https://doi.org/10.1037/0033-295X.115.1.186.

    Article  PubMed  Google Scholar 

  43. Hursh, S. R., & Winger, G. (1995). Normalized demand for drugs and other reinforcers. Journal of the Experimental Analysis of Behavior, 64(3), 373–384. https://doi.org/10.1901/jeab.1995.64-373.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jacobs, E. A., & Bickel, W. K. (1999). Modeling drug consumption in the clinic using simulation procedures: Demand for heroin and cigarettes in opioid-dependent outpatients. Experimental & Clinical Psychopharmacology, 7(4), 412–426. https://doi.org/10.1037//1064-1297.7.4.412.

    Article  Google Scholar 

  45. Jarmolowicz, D. P., Reed, D. D., Reed, F. D. D., & Bickel, W. K. (2016). The behavioral and neuroeconomics of reinforcer pathologies: Implications for managerial and health decision making. Managerial & Decision Economics, 37(4–5), 274–293. https://doi.org/10.1002/mde.2716.

    Article  Google Scholar 

  46. Johnson, P. S., & Johnson, M. W. (2014). Investigation of “bath salts” use patterns within an online sample of users in the United States. Journal of Psychoactive Drugs, 46(5), 369–378.

    Article  Google Scholar 

  47. Kagel, J. H., Battalio, R. C., & Green, L. (1995). Economic choice theory: An experimental analysis of animal behavior. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  48. Kaplan, B. A. (2018). beezdemand: Behavioral Economic Easy Demand. R package version 0.1.0. [Computer software]. Retrieved from: https://CRAN.R-project.org/package=beezdemand

  49. Kaplan, B. A., Foster, R. N. S., Reed, D. D., Amlung, M., Murphy, J. G., & MacKillop, J. (2018). Understanding alcohol motivation using the alcohol purchase task: A methodological systematic review. Drug & Alcohol Dependence, 191(1), 117–140. https://doi.org/10.1016/j.drugalcdep.2018.06.029.

    Article  Google Scholar 

  50. Kaplan, B. A., & Reed, D. D. (2014). Essential value, Pmax, and Omax automated calculator [Spreadsheet application]. Retrieved from: https://kuscholarworks.ku.edu/handle/1808/14934

  51. Kaplan, B. A., & Reed, D. D. (2018). Happy hour drink specials in the Alcohol Purchase Task. Experimental & Clinical Psychopharmacology, 26(2), 156–167. https://doi.org/10.1037/pha0000174.

    Article  Google Scholar 

  52. Katz, J. L. (1990). Models of relative reinforcing efficacy of drugs and their predictive utility. Behavioural Pharmacology, 1, 283–301.

    Article  Google Scholar 

  53. Koffarnus, M. N., Franck, C. T., Stein, J. S., & Bickel, W. K. (2015a). A modified exponential behavioral economic demand model to better describe consumption data. Experimental & Clinical Psychopharmacology, 23(6), 504–512. https://doi.org/10.1037/pha0000045.

    Article  Google Scholar 

  54. Koffarnus, M. N., Wilson, A. G., & Bickel, W. K. (2015b). Effects of experimental income on demand for potentially real cigarettes. Nicotine & Tobacco Research, 17(3), 292–298. https://doi.org/10.1093/ntr/ntu139.

    Article  Google Scholar 

  55. Lea, S. E. (1978). The psychology and economics of demand. Psychological Bulletin, 85, 441–466.

    Article  Google Scholar 

  56. Liao, W., Luo, X., Le, C. T., Chu, H., Epstein, L. H., Yu, J., & Thomas, J. L. (2013). Analysis of cigarette purchase task instrument data with a left-censored mixed effects model. Experimental & Clinical Psychopharmacology, 21(2), 124–132. https://doi.org/10.1037/a0031610.

    Article  Google Scholar 

  57. MacKillop, J. (2016). The behavioral economics and neuroeconomics of alcohol use disorders. Alcoholism-Clinical & Experimental Research, 40(4), 672–685. https://doi.org/10.1111/acer.13004.

    Article  Google Scholar 

  58. MacKillop, J., Brown, C. L., Stojek, M. K., Murphy, C. M., Sweet, L., & Niaura, R. S. (2012a). Behavioral economic analysis of withdrawal- and cue-elicited craving for tobacco: An initial investigation. Nicotine & Tobacco Research, 14(12), 1426–1434. https://doi.org/10.1093/ntr/nts006.

    Article  Google Scholar 

  59. MacKillop, J., Few, L. R., Murphy, J. G., Wier, L. M., Acker, J., Murphy, C., . . . Chaloupka, F. (2012b). High-resolution behavioral economic analysis of cigarette demand to inform tax policy. Addiction, 107(12), 2191–2200. doi:https://doi.org/10.1111/j.1360-0443.2012.03991.x

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mackillop, J., Murphy, C. M., Martin, R. A., Stojek, M., Tidey, J. W., Colby, S. M., & Rohsenow, D. J. (2016). Predictive validity of a cigarette purchase task in a randomized controlled trial of contingent vouchers for smoking in individuals with substance use disorders. Nicotine & Tobacco Research, 18(5), 531–537. https://doi.org/10.1093/ntr/ntv233.

    Article  Google Scholar 

  61. MacKillop, J., & Murphy, J. G. (2007). A behavioral economic measure of demand for alcohol predicts brief intervention outcomes. Drug & Alcohol Dependence, 89(2–3), 227–233. doi:https://doi.org/10.1016/j.drugalcdep.2007.01.002, 233

  62. MacKillop, J., Murphy, J. G., Ray, L. A., Eisenberg, D. T., Lisman, S. A., Lum, J. K., & Wilson, D. S. (2008). Further validation of a cigarette purchase task for assessing the relative reinforcing efficacy of nicotine in college smokers. Experimental & Clinical Psychopharmacology, 16(1), 57–65. https://doi.org/10.1037/1064-1297.16.1.57.

    Article  Google Scholar 

  63. MacKillop, J., Murphy, J. G., Tidey, J. W., Kahler, C. W., Ray, L. A., & Bickel, W. K. (2009). Latent structure of facets of alcohol reinforcement from a behavioral economic demand curve. Psychopharmacology, 203(1), 33–40. https://doi.org/10.1007/s00213-008-1367-5.

    Article  PubMed  Google Scholar 

  64. MacKillop, J., & Tidey, J. W. (2011). Cigarette demand and delayed reward discounting in nicotine-dependent individuals with schizophrenia and controls: An initial study. Psychopharmacology, 216(1), 91–99. https://doi.org/10.1007/s00213-011-2185-8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Madden, G. J., & Kalman, D. (2010). Effects of bupropion on simulated demand for cigarettes and the subjective effects of smoking. Nicotine & Tobacco Research, 12(4), 416–422. https://doi.org/10.1093/ntr/ntq018.

    Article  Google Scholar 

  66. Morris, V., Amlung, M., Kaplan, B. A., Reed, D. D., Petker, T., & MacKillop, J. (2017). Using crowdsourcing to examine behavioral economic measures of alcohol value and proportionate alcohol reinforcement. Experimental & Clinical Psychopharmacology, 25(4), 314–321. https://doi.org/10.1037/pha0000130.

    Article  Google Scholar 

  67. Murphy, J. G., & MacKillop, J. (2006). Relative reinforcing efficacy of alcohol among college student drinkers. Experimental & Clinical Psychopharmacology, 14(2), 219–227. https://doi.org/10.1037/1064-1297.14.2.219.

    Article  Google Scholar 

  68. Murphy, J. G., Yurasek, A. M., Dennhardt, A. A., Skidmore, J. R., McDevitt-Murphy, M. E., MacKillop, J., & Martens, M. P. (2013). Symptoms of depression and PTSD are associated with elevated alcohol demand. Drug & Alcohol Dependence, 127(1–3), 129–136. https://doi.org/10.1016/j.drugalcdep.2012.06.022.

    Article  Google Scholar 

  69. Nash, J. C. (2016). nlmrt: Functions for Nonlinear Least Squares Solutions (Version 2016.3.2). [computer software]. Retrieved from: https://CRAN.R-project.org/package=nlmrt

  70. O'Connor, R. J., Bansal-Travers, M., Carter, L. P., & Cummings, K. M. (2012). What would menthol smokers do if menthol in cigarettes were banned? Behavioral intentions and simulated demand. Addiction, 107(7), 1330–1338.

    PubMed  Google Scholar 

  71. O'Connor, R. J., June, K. M., Bansal-Travers, M., Rousu, M. C., Thrasher, J. F., Hyland, A., & Cummings, K. M. (2014). Estimating demand for alternatives to cigarettes with online purchase tasks. American Journal of Health Behavior, 38(1), 103–113. https://doi.org/10.5993/AJHB.38.1.11.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Open Science Collaboration. (2012). An open, large-scale, collaborative effort to estimate the reproducibility of psychological science. Perspectives on Psychological Science, 7(6), 657–660. https://doi.org/10.1177/1745691612462588.

    Article  Google Scholar 

  73. Qualtrics® Research Suite. (n.d.) [Web service]. https://www.qualtrics.com

  74. Quisenberry, A. J., Koffarnus, M. N., Hatz, L. E., Epstein, L. H., & Bickel, W. K. (2015). The experimental tobacco marketplace I: Substitutability as a function of the price of conventional cigarettes. Nicotine & Tobacco Research, 18(7), 1642–1648.

    Article  Google Scholar 

  75. R Core Team. (2018). R: A language and environment for statistical computing (Version 3.5.1). [Computer software]. R Foundation for Statistical Computing.

  76. Reed, D. D. (2015). GraphPad Prism 7.0a template for exponentiated demand analyses. [Software template]. Retrieved from: http://www.behavioraleconlab.com/resources%2D%2D-tools.html

  77. Reed, D. D., Kaplan, B. A., Becirevic, A., Roma, P. G., & Hursh, S. R. (2016). Toward quantifying the abuse liability of ultraviolet tanning: A behavioral economic approach to tanning addiction. Journal of the Experimental Analysis of Behavior, 106(1), 93–106. https://doi.org/10.1002/jeab.216.

    Article  PubMed  Google Scholar 

  78. Reed, D. D., Niileksela, C. R., & Kaplan, B. A. (2013). Behavioral economics: a tutorial for behavior analysts in practice. Behavior Analysis in Practice, 6(1), 34–54. https://doi.org/10.1007/BF03391790.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Roma, P. G., Hursh, S. R., & Hudja, S. (2016). Hypothetical purchase task questionnaires for behavioral economic assessments of value and motivation. Managerial & Decision Economics, 37(4–5), 306–323. https://doi.org/10.1002/mde.2718.

    Article  Google Scholar 

  80. Samuelson, P. A., & Nordhaus, W. D. (2009). Economics New York and London: McGraw-Hill.

    Google Scholar 

  81. Snider, S. E., Cummings, K. M., & Bickel, W. K. (2017). Behavioral economic substitution between conventional cigarettes and e-cigarettes differs as a function of the frequency of e-cigarette use. Drug & Alcohol Dependence, 177, 14–22. https://doi.org/10.1016/j.drugalcdep.2017.03.017.

    Article  Google Scholar 

  82. Spiga, R., Martinetti, M. P., Meisch, R. A., Cowan, K., & Hursh, S. (2005). Methadone and nicotine self-administration in humans: a behavioral economic analysis. Psychopharmacology, 178(2–3), 223–231. doi:https://doi.org/10.1007/s00213-004-2020-6, 223

  83. StackOverflow. (n.d.). [Computer software]. Retrieved from https://stackoverflow.com

  84. Stein, J. S., Koffarnus, M. N., Snider, S. E., Quisenberry, A. J., & Bickel, W. K. (2015). Identification and management of nonsystematic purchase task data: Toward best practice. Experimental & Clinical Psychopharmacology, 23(5), 377–386. https://doi.org/10.1037/pha0000020.

    Article  Google Scholar 

  85. Strickland, J. C., Lile, J. A., Rush, C. R., & Stoops, W. W. (2016). Comparing exponential and exponentiated models of drug demand in cocaine users. Experimental & Clinical Psychopharmacology, 24(6), 447–455. https://doi.org/10.1037/pha0000096.

    Article  Google Scholar 

  86. Strickland, J. C., & Stoops, W. W. (2018). Feasibility, acceptability, and validity of crowdsourcing for collecting longitudinal alcohol use data. Journal of the Experimental Analysis of Behavior, 110(1), 136–153. https://doi.org/10.1002/jeab.445.

    Article  PubMed  Google Scholar 

  87. Swirl. (n.d.). Swirl: Learn R in R. [Computer software]. https://swirlstats.com

  88. Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston, MA: Pearson.

    Google Scholar 

  89. Tippmann, S. (2015). Programming tools: Adventures with R. Nature, 517(7532), 109–110. https://doi.org/10.1038/517109a.

    Article  PubMed  Google Scholar 

  90. Use R! Series (n.d.) Use R! series. (R. Gentleman, K. Hornik, & G. Parmigiani, eds.). Boston, MA: Springer.

  91. Vincent, P. C., Collins, R. L., Liu, L., Yu, J., De Leo, J. A., & Earleywine, M. (2017). The effects of perceived quality on behavioral economic demand for marijuana: A web-based experiment. Drug & Alcohol Dependence, 170, 174–180. https://doi.org/10.1016/j.drugalcdep.2016.11.013.

    Article  Google Scholar 

  92. Wilson, A. G., Franck, C. T., Koffarnus, M. N., & Bickel, W. K. (2016). Behavioral economics of cigarette purchase tasks: Within-subject comparison of real, potentially real, and hypothetical cigarettes. Nicotine & Tobacco Research, 18(5), 524–530. https://doi.org/10.1093/ntr/ntv154.

    Article  Google Scholar 

  93. Wine, B., Gilroy, S., & Hantula, D. A. (2012). Temporal (in)stability of employee preferences for rewards. Journal of Organizational Behavior Management, 32(1), 58–64. https://doi.org/10.1080/01608061.2012.646854.

    Article  Google Scholar 

  94. Xie, Y. (2016). Dynamic documents with R and knitr. Boca Raton, Florida: Chapman; Hall/CRC.

    Book  Google Scholar 

  95. Yu, J., Liu, L., Collins, R. L., Vincent, P. C., & Epstein, L. H. (2014). Analytical problems and suggestions in the analysis of behavioral economic demand curves. Multivariate Behavioral Research, 49(2), 178–192. https://doi.org/10.1080/00273171.2013.862491.

    Article  PubMed  Google Scholar 

  96. Zhao, T., Luo, X., Chu, H., Le, C. T., Epstein, L. H., & Thomas, J. L. (2016). A two-part mixed effects model for cigarette purchase task data. Journal of the Experimental Analysis of Behavior, 106(3), 242–253. https://doi.org/10.1002/jeab.228.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere gratitude to Paul E. Johnson (Center for Research Methods and Data Analysis, Lawrence, KS), Peter G. Roma (National Aeronautics and Space Administration Johnson Space Center, Houston, TX), W. Brady DeHart (Virginia Tech Carilion Research Institute, Roanoke, VA), and Michael Amlung (Cognitive Neuroscience of Addictions Laboratory, Hamilton, ON) for their helpful feedback and advice on early iterations of the beezdemand package.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brent A. Kaplan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Introduction to R and beezdemand: https://github.com/brentkaplan/beezdemand/tree/master/pobs

Latest stable release package location: https://CRAN.R-project.org/package=beezdemand

Latest development package location: https://github.com/brentkaplan/beezdemand

Simulation script location: https://github.com/brentkaplan/DemandCurveSimulations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaplan, B.A., Gilroy, S.P., Reed, D.D. et al. The R package beezdemand: Behavioral Economic Easy Demand. Perspect Behav Sci 42, 163–180 (2019). https://doi.org/10.1007/s40614-018-00187-7

Download citation

Keywords

  • behavioral economics
  • demand
  • R programming language
  • behavioral science
  • purchase task
  • free and open source software