Skip to main content

Advertisement

Log in

Immunotherapy Options for Neuroblastoma: What is on the Horizon?

  • REVIEW
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neuroblastoma is the most commonly seen extracranial tumor in children originating from the sympathetic nervous system. It is responsible for approximately 20% of cancer-related deaths in the pediatric population, making this malignancy one of the worst scenarios. Patients are classified into low or high-risk groups based on their tumor's age at diagnosis, histological tumor stage, and genetic status. Despite the good outcomes of current therapy modalities in low-risk neuroblastoma patients, investigation of novel treatment paradigms for high-risk neuroblastoma patients is necessary.

Recent Findings

Current therapy for high-risk neuroblastoma patients consists of chemotherapy, surgical resection, radiotherapy, the combination of high-dose chemotherapy with autologous hematopoietic stem-cell transplantation, isotretinoin, immunotherapy with anti-GD2 monoclonal antibodies and cytokines, and radioimmunotherapy. These options achieve high rates of overall survival, yet the challenges of improving anti-GD2 immunotherapy remain. Low mutational burden, restricted T-cell infiltration, and downregulated MHC-1 expression are critical factors that pose significant challenges to the success of immunotherapy. It is crucial to address these hurdles to ensure the effectiveness of the treatment.

Summary

There has been a significant research focus on overcoming the immunologic impediments that hinder progress in treatment and describing novel target molecules for neuroblastoma. This paper provides a comprehensive review of the immunological landscape of the malignancy under study and highlights the latest potent approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. •• Dowsey M. Cytokine Immunotherapy for Neuroblastoma. Science Insights. 2023;41(1):787–92. This paper has reviewed the potentiating effects of cytokines on immunotherapy and provides a general aspect of immunotherapy. In addition, this article was integral to the current study.

    Article  Google Scholar 

  2. Tsubota S, Kadomatsu K. Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res. 2018;372:211–21.

    Article  CAS  PubMed  Google Scholar 

  3. • Di Matteo S, Avanzini MA, Pelizzo G, Calcaterra V, Croce S, Spaggiari GM, et al. Neuroblastoma Tumor-Associated Mesenchymal Stromal Cells Regulate the Cytolytic Functions of NK Cells. Cancers. 2025;15(1):19. This work has clarified the inhibitory effect of tumor-associated mesenchymal stromal cells by checkpoint molecule expression on immune cells. Especially on NK cells in addition to checkpoint expression, downregulation of activatory receptors is seen in co-culture.

    Article  Google Scholar 

  4. Swift CC, Eklund MJ, Kraveka JM, Alazraki AL. Updates in diagnosis, management, and treatment of neuroblastoma. Radiographics. 2018;38(2):566–80.

    Article  PubMed  Google Scholar 

  5. Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, et al. The International Neuroblastoma Risk Group (INRG) Staging System: An INRG Task Force Report. J Clin Oncol. 2009;27(2):298–303.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Muñoz JP, Larrosa C, Chamorro S, Perez-Jaume S, Simao M, Sanchez-Sierra N, et al. Early Salvage Chemo-Immunotherapy with Irinotecan, Temozolomide and Naxitamab Plus GM-CSF (HITS) for Patients with Primary Refractory High-Risk Neuroblastoma Provide the Best Chance for Long-Term Outcomes. Cancers. 2023;15(19):4837.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zeng L, Liu X-Y, Chen K, Qin L-J, Wang F-H, Miao L, et al. Phosphoserine phosphatase as an indicator for survival through potentially influencing the infiltration levels of immune cells in neuroblastoma. Front cell dev biol. 2022;10: 873710.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Park JA, Cheung NKV. Targets and antibody formats for immunotherapy of neuroblastoma. J Clin Oncol. 2020;38(16):1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma (Primer). Nature Reviews: Disease Primers. 2016;2(1).

  10. Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The landscape of genomic alterations across childhood cancers. Nature. 2018;555(7696):321–7.

    Article  PubMed  Google Scholar 

  11. •• Anderson J, Majzner RG, Sondel PM. Immunotherapy of neuroblastoma: facts and hopes. Clin Cancer Res. 2022;28(15):3196. This article has outlined the neuroblastoma and immunotherapy of neuroblastoma in a general aspect, so it was integral to this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raffaghello L, Prigione I, Airoldi I, Camoriano M, Morandi F, Bocca P, et al. Mechanisms of immune evasion of human neuroblastoma. Cancer Lett. 2005;228(1–2):155–61.

    Article  CAS  PubMed  Google Scholar 

  13. Airoldi I, Lualdi S, Bruno S, Raffaghello L, Occhino M, Gambini C, et al. Expression of costimulatory molecules in human neuroblastoma. Evidence that CD40+ neuroblastoma cells undergo apoptosis following interaction with CD40L. Br J Cancer. 2003;8(10):1527–36.

    Article  Google Scholar 

  14. Rivoltini L, Arienti F, Orazi A, Cefalo G, Gasparini M, Gambacorti-Passerini C, et al. Phenotypic and functional analysis of lymphocytes infiltrating paediatric tumours, with a characterization of the tumour phenotype. Cancer Immunol Immunother. 1992;34(4):241–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Asgharzadeh S, Salo JA, Ji L, Oberthuer A, Fischer M, Berthold F, et al. Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J Clin Oncol. 2012;30(28):3525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363(14):1324–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu L, Huang L, Lin D, Lai X, Wu L, Liao X, et al. GD2-specific chimeric antigen receptor-modified T cells for the treatment of refractory and/or recurrent neuroblastoma in pediatric patients. J Cancer Res Clin Oncol. 2022:1–10.

  18. Galassi L, Rossi M, Lodeserto P, Lenzi M, Borsetti F, Voltattorni M, et al. Naxitamab Activity in Neuroblastoma Cells Is Enhanced by Nanofenretinide and Nanospermidine. Pharmaceutics. 2023;15(2):648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nazha B, Inal C, Owonikoko TK. Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front Oncol. 2020;10:1000.

    Article  PubMed  PubMed Central  Google Scholar 

  20. New drug: Dinutuximab beta for neuroblastoma. Australian Prescriber. 2020;43(6):212–3. Available from: https://pubmed.ncbi.nlm.nih.gov/33363307/.

  21. Markham A. Naxitamab: first approval. Drugs. 2021;81:291–6.

    Article  CAS  PubMed  Google Scholar 

  22. Mody R, Alice LY, Naranjo A, Zhang FF, London WB, Shulkin BL, et al. Irinotecan, temozolomide, and dinutuximab with GM-CSF in children with refractory or relapsed neuroblastoma: a report from the Children’s Oncology Group. J Clin Oncol. 2020;38(19):2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seeger RC. editor Immunology and immunotherapy of neuroblastoma. Semin Cancer Biol. 2011; Elsevier.

  24. Wieczorek A, Manzitti C, Garaventa A, Gray J, Papadakis V, Valteau-Couanet D, et al. Clinical phenotype and management of severe neurotoxicity observed in patients with neuroblastoma treated with dinutuximab beta in clinical trials. Cancers. 2022;14(8):1919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kroesen M, Büll C, Gielen PR, Brok IC, Armandari I, Wassink M, et al. Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma. Oncoimmunology. 2016;5(6): e1164919.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Siebert N, Zumpe M, Schwencke CH, Biskupski S, Troschke-Meurer S, Leopold J, et al. Combined Blockade of TIGIT and PD-L1 Enhances Anti-Neuroblastoma Efficacy of GD2-Directed Immunotherapy with Dinutuximab Beta. Cancers. 2023;15(13):3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shibina A, Seidel D, Somanchi SS, Lee DA, Stermann A, Maurer BJ. Fenretinide sensitizes multidrug-resistant human neuroblastoma cells to antibody-independent and ch14. 18-mediated NK cell cytotoxicity. J Mol Med. 2013;19:459–72.

    Article  Google Scholar 

  28. Bahri M, Kailayangiri S, Vermeulen S, Galopin N, Rossig C, Paris F, et al. SIRPα-specific monoclonal antibody enables antibody-dependent phagocytosis of neuroblastoma cells. Cancer Immunol Immunother. 2022;71(1):71–83.

    Article  CAS  PubMed  Google Scholar 

  29. Terme M, Dorvillius M, Cochonneau D, Chaumette T, Xiao W, Diccianni MB, et al. Chimeric antibody c. 8B6 to O-acetyl-GD2 mediates the same efficient anti-neuroblastoma effects as therapeutic ch14. 18 antibody to GD2 without antibody induced allodynia. PLoS One. 2014;9(2):e87210.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Slattery K, Breheny M, Woods E, Keating S, Brennan K, Rooney C, et al. Heightened metabolic responses in NK cells from patients with neuroblastoma suggests increased potential for immunotherapy. Front Oncol. 2022;12:1004871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McNerney KO, Karageorgos SA, Hogarty MD, Bassiri H. Enhancing neuroblastoma immunotherapies by engaging iNKT and NK cells. Front Immunol. 2020;11:873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heinze A, Grebe B, Bremm M, Huenecke S, Munir TA, Graafen L, et al. The synergistic use of IL-15 and IL-21 for the generation of NK cells from CD3/CD19-depleted grafts improves their ex vivo expansion and cytotoxic potential against neuroblastoma: perspective for optimized immunotherapy post haploidentical stem cell transplantation. Front Immunol. 2019;10:2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol. 2017;8:1124.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kimpo MS, Oh B, Lee S. The role of natural killer cells as a platform for immunotherapy in pediatric cancers. Curr Oncol Rep. 2019;21:1–9.

    Article  CAS  Google Scholar 

  35. Chiossone L, Dumas P-Y, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671–88.

    Article  CAS  PubMed  Google Scholar 

  36. • Aiken TJ, Erbe AK, Zebertavage L, Komjathy D, Feils AS, Rodriguez M, et al. Mechanism of effective combination radio-immunotherapy against 9464D-GD2, an immunologically cold murine neuroblastoma. J immunotherap cancer. 2022;10(5). This article has provided information about the CAIR method to induce adaptive and innate immunity by targeting checkpoint molecules.

  37. Delgado DC, Hank JA, Kolesar J, Lorentzen D, Gan J, Seo S, et al. Genotypes of NK cell KIR receptors, their ligands, and Fcγ receptors in the response of neuroblastoma patients to Hu14. 18-IL2 immunotherapy. Cancer research. 2010;70(23):9554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nguyen R, Sahr N, Sykes A, McCarville MB, Federico SM, Sooter A, et al. Longitudinal NK cell kinetics and cytotoxicity in children with neuroblastoma enrolled in a clinical phase II trial. J immunotherap cancer. 2020;8(1).

  39. Modak S, Le Luduec J-B, Cheung IY, Goldman DA, Ostrovnaya I, Doubrovina E, et al. Adoptive immunotherapy with haploidentical natural killer cells and Anti-GD2 monoclonal antibody m3F8 for resistant neuroblastoma: Results of a phase I study. Oncoimmunology. 2018;7(8): e1461305.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Wu H-W, Sheard MA, Sposto R, Somanchi SS, Cooper LJ, et al. Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin Cancer Res. 2013;19(8):2132–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barry WE, Jackson JR, Asuelime GE, Wu H-W, Sun J, Wan Z, et al. Activated natural killer cells in combination with anti-GD2 antibody dinutuximab improve survival of mice after surgical resection of primary neuroblastoma. Clin Cancer Res. 2019;25(1):325–33.

    Article  CAS  PubMed  Google Scholar 

  42. Cornel AM, Dunnebach E, Hofman DA, Das S, Sengupta S, van den Ham F, et al. Epigenetic modulation of neuroblastoma enhances T cell and NK cell immunogenicity by inducing a tumor-cell lineage switch. J immunotherap cancer. 2022;10(12).

  43. Idso JM, Lao S, Schloemer NJ, Knipstein J, Burns R, Thakar MS, et al. Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway. Oncotarget. 2020;11(20):1799.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mills CM, Benton TZ, Piña I, Francis MJ, Reyes L, Dolloff NG, et al. Stimulation of natural killer cells with small molecule inhibitors of CD38 for the treatment of neuroblastoma. Chem Sci. 2023;14(8):2168–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burga RA, Yvon E, Chorvinsky E, Fernandes R, Cruz CRY, Bollard CM. Engineering the TGFβ receptor to enhance the therapeutic potential of natural killer cells as an immunotherapy for neuroblastoma. Clin Cancer Res. 2019;25(14):4400–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tran HC, Wan Z, Sheard MA, Sun J, Jackson JR, Jackson J, et al. TGFβR1 blockade with galunisertib (LY2157299) enhances anti-neuroblastoma activity of the anti-GD2 antibody dinutuximab (ch14. 18) with natural killer cells. Clin Cancer Res. 2017;23(3):804–13.

    Article  CAS  PubMed  Google Scholar 

  47. Focaccetti C, Benvenuto M, Pighi C, Vitelli A, Napolitano F, Cotugno N, et al. DNAM-1-chimeric receptor-engineered NK cells, combined with Nutlin-3a, more effectively fight neuroblastoma cells in vitro: A proof-of-concept study. Front Immunol. 2022;13: 886319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bodden M, Häcker A, Röder J, Kiefer A, Zhang C, Bhatti A, et al. Co-expression of an IL-15 superagonist facilitates self-enrichment of GD2-Targeted CAR-NK cells and mediates potent cell killing in the absence of IL-2. Cancers. 2023;15(17):4310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Richards RM, Sotillo E, Majzner RG. CAR T cell therapy for neuroblastoma. Front Immunol. 2018;9:2380.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wienke J, Dierselhuis MP, Tytgat GA, Künkele A, Nierkens S, Molenaar JJ. The immune landscape of neuroblastoma: challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur J Cancer. 2021;144:123–50.

    Article  CAS  PubMed  Google Scholar 

  51. Mastronuzzi A, Colafati GS, Carai A, D’Egidio M, Fabozzi F, Del Bufalo F, et al. Central nervous system metastasis in neuroblastoma: From three decades clinical experience to new considerations in the immunotherapy era. Cancers. 2022;14(24):6249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen Y-J, Abila B, Mostafa KY. CAR-T: What Is Next? Cancers. 2023;15(3):663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hou B, Tang Y, Li W, Zeng Q, Chang D. Efficiency of CAR-T therapy for treatment of solid tumor in clinical trials: a meta-analysis. Disease markers. 2019;2019.

  54. Daei Sorkhabi A, Mohamed Khosroshahi L, Sarkesh A, Mardi A, Aghebati-Maleki A, Aghebati-Maleki L, et al. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Front Immunol. 2023;14:1113882.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, et al. Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients with neuroblastoma. Blood, The Journal of the American Society of Hematology. 2011;118(23):6050–6.

    CAS  Google Scholar 

  56. Yeku OO, Longo DL. CAR T Cells for Neuroblastoma. Mass Medical Soc. 2023;1328–31.

  57. • Del Bufalo F, De Angelis B, Del Baldo G, De Ioris ma, Serra A, et al. GD2-CART01 for Relapsed or Refractory High-Risk Neuroblastoma. N Engl J Med. 2023;388(14):1284–95. This paper provides insights into the results of clinical trials investigating the efficiency and safety of CAR T cell therapy targeting GD2.

    Article  PubMed  Google Scholar 

  58. Kennedy PT, Zannoupa D, Son MH, Dahal LN, Woolley JF. Neuroblastoma: an ongoing cold front for cancer immunotherapy. J Immunother Cancer. 2023;11(11): e007798.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Moghimi B, Muthugounder S, Jambon S, Tibbetts R, Hung L, Bassiri H, et al. Preclinical assessment of the efficacy and specificity of GD2-B7H3 SynNotch CAR-T in metastatic neuroblastoma. Nat Commun. 2021;12(1).

  60. Heitzeneder S, Bosse KR, Zhu Z, Zhelev D, Majzner RG, Radosevich MT, et al. GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell. 2022;40(1):53-69.e9.

    Article  CAS  PubMed  Google Scholar 

  61. Bergaggio E, Tai WT, Aroldi A, Mecca C, Landoni E, Nüesch M, et al. ALK inhibitors increase ALK expression and sensitize neuroblastoma cells to ALK.CAR-T cells. Cancer Cell. 2023;41(12):2100-2116.e10.

    Article  CAS  PubMed  Google Scholar 

  62. Heczey A, Xu X, Courtney AN, Tian G, Barragan GA, Guo L, et al. Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: updated phase 1 trial interim results. Nat Med. 2023;29(6):1379–88.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang J, Webster S, Duffin B, Bernstein MN, Steill J, Swanson S, et al. Generation of anti-GD2 CAR macrophages from human pluripotent stem cells for cancer immunotherapies. Stem Cell Reports. 2023;18(2):585–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu KX, Joshi S. “Re-educating” Tumor Associated Macrophages as a Novel Immunotherapy Strategy for Neuroblastoma. Front immunol. 2020;11.

  65. Zafari R, Razi S, Rezaei N. The Role of Dendritic cells in Neuroblastoma: Implications for Immunotherapy. Immunobiol. 2022:152293.

  66. Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J exp clin cancer res. 2023;42(1).

  67. • Feng C, Li T, Xiao J, Wang J, Meng X, Niu H, et al. Tumor microenvironment profiling identifies prognostic signatures and suggests immunotherapeutic benefits in neuroblastoma. Front cell dev biol. 2022;10:814836. This study defines subgroups based on gene expression profiles of tumors and demonstrates that differentially expressed genes shed light on the diversity of treatment responses of different tumors.

  68. Wu H-W, Sheard MA, Malvar J, Fernandez GE, Declerck YA, Blavier L, et al. Anti-CD105 Antibody Eliminates Tumor Microenvironment Cells and Enhances Anti-GD2 Antibody Immunotherapy of Neuroblastoma with Activated Natural Killer Cells. Clin Cancer Res. 2019;25(15):4761–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shirinbak S, Chan RY, Shahani S, Muthugounder S, Kennedy R, Hung LT, et al. Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma. OncoImmunology. 2021;10(1):1838140.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Inoue S, Takeuchi Y, Horiuchi Y, Murakami T, Odaka A. CD69 on Tumor-Infiltrating Cells Correlates with Neuroblastoma Suppression by Simultaneous PD-1 and PD-L1 Blockade. J Surg Res. 2023;289:190–201.

    Article  CAS  PubMed  Google Scholar 

  71. Chauvin J-M, Zarour HM. TIGIT in cancer immunotherapy. J Immunother. 2020;8(2).

  72. Wienke J, Visser LL, Kholosy WM, Keller KM, Barisa M, Poon E, et al. Integrative analysis of neuroblastoma by single-cell RNA sequencing identifies the NECTIN2-TIGIT axis as a target for immunotherapy. Cancer Cell. 2024.

  73. Guo X, Chang M, Wang Y, Xing B, Ma W. B7–H3 in Brain Malignancies: Immunology and Immunotherapy. Int J Biol Sci. 2023;19(12):3762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. • Rasic P, Jeremic M, Jeremic R, Dusanovic Pjevic M, Rasic M, Djuricic SM, et al. Targeting B7-H3—A Novel Strategy for the Design of Anticancer Agents for Extracranial Pediatric Solid Tumors Treatment. Molecules. 2023;28(8):3356. In this article, in addition to the effect of B7-H3 molecules on tumor cells, SynNotch gated method is discussed about CAR T cell therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. • Tian X-M, Xiang B, Yu Y-H, Li Q, Zhang Z-X, Zhanghuang C, et al. A novel cuproptosis-related subtypes and gene signature associates with immunophenotype and predicts prognosis accurately in neuroblastoma. Front immunol. 2022;13:999849. In this paper, copper-related metabolic pathways and their effects on tumor cells are clarified as novel aspects of the treatment of neuroblastoma.

  76. Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, et al. Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion. Can Res. 2020;80(19):4129–44.

    Article  CAS  Google Scholar 

  77. Sha Y, Han L, Sun B, Zhao Q. Identification of a glycosyltransferase signature for predicting prognosis and immune microenvironment in neuroblastoma. Frontiers in cell and developmental biology. 2022;9:769580.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Roy Choudhury S, Karmakar S, Banik NL, Ray SK. Targeting angiogenesis for controlling neuroblastoma. J Oncol 2012. 2012.

  79. Sekhri P, Ledezma DK, Shukla A, Sweeney EE, Fernandes R. The Thermal Dose of Photothermal Therapy Generates Differential Immunogenicity in Human Neuroblastoma Cells. Cancers. 2022;14(6):1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.K. and B.B. wrote the main manuscript text and A.K. and B.B. prepared the original figure1 and figure2. All authors reviewed the manuscript.

Corresponding author

Correspondence to Beyda Berberogullari.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies of human and animal subjects performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakus, A., Berberogullari, B. Immunotherapy Options for Neuroblastoma: What is on the Horizon?. Curr Mol Bio Rep (2024). https://doi.org/10.1007/s40610-024-00160-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40610-024-00160-1

Keywords

Navigation