Skip to main content

Muscles Lost in Our Adult Primate Ancestors Still Imprint in Us: on Muscle Evolution, Development, Variations, and Pathologies


The study of evolutionary developmental pathologies (Evo-Devo-Path) is an emergent field that relies on comparative anatomy to inform our understanding of the development and evolution of normal and abnormal structures in different groups of organisms, with a special focus on humans. Previous research has demonstrated that some muscles that have been lost in our ancestors well before the evolution of anatomically modern humans occasionally appear as variations in adults within the normal human population or as anomalies in individuals with congenital malformations. Here, we provide the first review of fourteen atavistic muscles/groups of muscles that are only present as variations or anomalies in modern humans but are commonly present in other primate species. Muscles within the head and neck and pectoral girdle and upper limb region include platysma cervicale, mandibulo-auricularis, rhomboideus occipitalis, levator claviculae, dorsoepitrochlearis, panniculus carnosus, epitrochleoanconeus, and contrahentes digitorum manus. Within the lower limb, they include scansorius, ischiofemoralis, contrahentes digitorum pedis, opponens hallucis, abductor metatarsi quinti, and opponens digiti minimi. For each muscle, we describe their synonyms, comparative anatomy among primates, embryonic development, presentation and prevalence as a variation, and presentation and prevalence as an anomaly. Research on the embryonic origins of six of these muscles has demonstrated that they appear early on in normal human development but usually disappear before birth. Among the eight muscles in the upper half of the body, mandibulo-auricularis is, to our knowledge, present in humans only as a variation, while the other seven muscles can be present as either a variation or an anomaly. All six muscles of the lower limb are present only as variations, and to our knowledge have not been described in anomalous individuals. Interestingly, although these muscles conform to most definitions of what constitutes an atavism—i.e., they were lost in our adult ancestors and now appear in some adult humans—some of them are seemingly present in more than 2% of the normal population. Therefore, they might actually constitute polymorphisms rather than variations. The research summarized here therefore emphasizes the need of future studies of the evolution, development, and prevalence of soft tissue variations and anomalies in humans, not only for the understanding of our evolutionary history but also of our phenotype and pathologies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of Data and Material (Data Transparency)

Not applicable.

Code Availability (Software Application or Custom Code)

Not applicable.


  1. 1.

    Ramsay A. An account of unusual conformation of some muscles and vessels. Edinburgh Med Surg J. 181;8:281–3.

  2. 2.

    Lauth EA. Varietes dans la distribution des muscles de l'homme. Mem de la Soc d'Histoire Naturelle de Strasbourg. 1830;1:65–9.

    Google Scholar 

  3. 3.

    Allan RW. Dissection of a human astomatous cyclops. Lancet. 1848;1:227–8.

    Article  Google Scholar 

  4. 4.

    Gruber W. Die supernumiraren Brustmuskeln des Menschen. Mem Acad Imp Sci Saint Petersberg. 1860;3:1–3.

    Google Scholar 

  5. 5.

    Wood J. Variations in human myology observed during the winter session of 1866–7 at King's College London. Proc Royal Soc. 1867;15:518–45.

    Article  Google Scholar 

  6. 6.

    Macalister A. Additional observations on the muscular anomalies in the human anatomy. Third series with a catalogue of principal muscular variations hitherto published. Trans Royal Irish Acad Sci. 1875;25:1–134.

    Google Scholar 

  7. 7.

    Smith RM, Parker AJ. Dissection of a human otocephalic cyclops monstrosity. Am J Med Sci. 1882;84:132–40.

    Article  Google Scholar 

  8. 8.

    Knott JF. Abnormalities in human myology. Proc Roy Irish Acad. 1883;3:407–27.

    Google Scholar 

  9. 9.

    Windle BC. The myology of the anencephalous foetus. J Anat Physiol. 1893;27:348–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Tyson E. Orang-Outang sive Homo sylvestris, or the anatomy of a pygmie compared to that of a monkey, an ape and a man. London: T. Bennet; 1699.

    Google Scholar 

  11. 11.

    Wood J. On a group of varieties of the muscles of the human neck, shoulder, and chest, with their transitional forms and homologies in the Mammalia. Philos Trans R Soc Lond. 1870;160:83–116.

    Google Scholar 

  12. 12.

    Barnard WS. Observations on the membral musculation of Simia satyrus (Orang) and the comparative myology of man and the apes. Proc Am Assoc Adv Sci. 1875;24:112–44.

    Google Scholar 

  13. 13.

    Testut L. Les anomalies musculaires chez l’homme expliquèes par l’anatomie comparée et leur importance en anthropologie. Paris: Masson; 1884.

    Google Scholar 

  14. 14.

    Hepburn D. The comparative anatomy of the muscles and nerves of the superior and inferior extremities of the anthropoid apes: I—myology of the superior extremity. J Anat Physiol. 1892;26:149–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Le Double F. Traité des variations du systéme musculaire de l'homme et de leur signification au point de vue de l'anthropologie zoologique, I et II. Paris: Librairie C. Reinwald; 1897.

    Google Scholar 

  16. 16.

    Diogo R, Hinits Y, Hughes SM. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods. BMC Dev Biol. 2008;8:24–46.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Grenier J, Teillet M-A, Grifone R, Kelly RG, Duprez D. Relationship between neural crest cells and cranial mesoderm during head muscle development. PLoS One. 2009;4:e4381.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Ziermann JM, Diogo R. Cranial muscle development in the model organism Ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny. Anat Rec. 2013;296:1031–48.

    Article  Google Scholar 

  19. 19.

    Diogo R, Siomava N, Gitton Y. Development of human limb muscles based on whole–mounted immunostaining and the links between ontogeny and evolution. Development. 2019;146:dev180349.

  20. 20.

    Diogo R, Smith CM, Ziermann JM. Evolutionary developmental pathology and anthropology: a new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine. Dev Dyn. 2015;244:1357–74.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Smith CM, Ziermann JM, Molnar J, Gondre-Lewis MC, Sandone C, Bersu ET, et al. Muscular and skeletal anomalies in human trisomy in an evo–devo context: description of a T18 cyclopic fetus and comparison between Edwards (T18), Patau (T13) and Down (T21) syndromes using 3–D imaging and anatomical illustrations. Boca Raton: CRC Press; 2015.

    Google Scholar 

  22. 22.

    Diogo R, Guinard G, Diaz R. Dinosaurs, chameleons, humans and evo-devo-path: linking Étienne Geoffroy's teratology, Waddington's homeorhesis, Alberch's logic of 'monsters', and Goldschmidt hopeful 'monsters. J Exp ZoolB (Mol Devel Evol). 2016;328:207–29.

    Article  Google Scholar 

  23. 23.

    Diogo R, Wood B. Origin, development and evolution of primate muscles, with notes on human anatomical variations and anomalies. In: Boughner J, Rolian C, editors. Developmental approaches to human evolution. Hoboken: John Wiley & Sons; 2016. p. 167–204.

    Google Scholar 

  24. 24.

    Diogo R, Ziermann JM, Smith C, Alghmadi M, Fuentes JSM, Duerinckx A. First use of anatomical networks to study modularity and integration of heads, forelimbs and hindlimbs in abnormal anencephalic and cyclopic vs normal human development. Sci Rep. 2019;9:7821.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Diogo R, Razmadze D, Siomava N, Douglas B, Fuentes JSM, Duerinckx A. Musculoskeletal study of cebocephalic and cyclopic lamb heads illuminates links between normal and abnormal development, evolution, and human pathologies. Sci Rep. 2019;9:991.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Shkil F, Siomava N, Voronezhskaya E, Diogo R. Effects of hyperthyroidism in the development of the appendicular skeleton and muscles of zebrafish, with notes on evolutionary developmental pathology (Evo-Devo-Path). Sci Rep. 2019;9:5413.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Crowley B, Stevenson S, Diogo R. Radial polydactyly: putting together evolution, development, and clinical anatomy. J Hand Surg Eur Vol. 2019;44:51–8.

    PubMed  Article  Google Scholar 

  28. 28.

    Alghamdi MA, Ziermann JM, Gregg L, Diogo R. A detailed musculoskeletal study of a fetus with anencephaly and spina bifida (craniorachischisis), and comparison with other cases of human congenital malformations. J Anat. 2017;230:842–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Alghamdi M, Diogo R, Izquierdo R, Pastor FJ, De La Paz F, Ziermann J Detailed musculoskeletal study of a fetus with trisomy 18 (Edwards syndrome) with Langer’s axillary arch, and comparison with other cases of human congenital malformations. J Anat Sci Res 2018;1:1–8.

  30. 30.

    Molnar J, Diaz RE, Skorka T, Dagliyan G, Diogo R. Comparative musculoskeletal anatomy of chameleon limbs, with implications for the evolution of arboreal locomotion in lizards and for teratology. J Morphol. 2017;278:1241–61.

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Diogo R, Wood B. Violation of Dollo's law: evidence of muscle reversions in primate phylogeny and their implications for the understanding of the ontogeny, evolution and anatomical variations of modern humans. Evolution. 2012;66:3267–76.

    PubMed  Article  Google Scholar 

  32. 32.

    Haeckel E. Generelle Morphologie der Organismen Vols I and II. Berlin: Georg Reimer; 1866.

    Book  Google Scholar 

  33. 33.

    von Baer KE. Über Entwickelungsgeschichte der Thiere. Beobachtung und reflexion. Bornträger: Königsberg; 1828.

    Book  Google Scholar 

  34. 34.

    Cihák R. Ontogenesis of the skeleton and intrinsic muscles of the human hand and foot. Ergebn d Anat u Entw Gesch Bd. 1972;46:1–194.

    Google Scholar 

  35. 35.

    Hall BK. Developmental mechanisms underlying the formation of atavisms. Biol Rev. 1984;59:89–124.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    West-Eberhard MJ. Developmental plasticity and evolution. Oxford: Oxford University Press; 2003.

    Google Scholar 

  37. 37.

    Gasser RF. The development of the facial muscles in man. Am J Anat. 1967;120:357–76.

    Article  Google Scholar 

  38. 38.

    Martinoli C, Miguel Perez M, Padua L, Valle M, Capaccio E, Altafini L, et al. Muscle variants of the upper and lower limb (with anatomical correlation). Semin Musculoskelet Radiol. 2010;14:106–21.

    PubMed  Article  Google Scholar 

  39. 39.

    Bergman RA, Thompson SA, Afifi AK, Saadeh FA. Compendium of human anatomic variation: text, atlas, and world literature. Baltimore: Urban & Schwarzenberg; 1988.

    Google Scholar 

  40. 40.

    Bakkum BW, Miller N. Back muscles. In: Tubbs RS, Shoja MM, Loukas M, editors. Bergman’s comprehensive encyclopedia of human anatomic variation. 1st ed. Hoboken: Wiley-Blackwell; 2016. p. 262–88.

    Google Scholar 

  41. 41.

    Futamura R. Uber die Entwicklung der Facialismuskulatur des Menschen. Anat Hefte. 1906;30:433–516.

    Article  Google Scholar 

  42. 42.

    Lewis WH. The development of the muscular system. In: Keibel F, Mall FP, editors. Manual of human embryology, vol. 1. Philadelphia: Lippin–cott; 1910. p. 454–522.

    Google Scholar 

  43. 43.

    Diogo R, Potau JM, Pastor JF, De Paz F, Barbosa MM, Ferrero EM, et al. Photographic and descriptive atlas of Gorilla – with notes on the attachments, variations, innervation, synonymy and weight of the muscles. Oxford: Taylor & Francis; 2010.

    Google Scholar 

  44. 44.

    Diogo R, Potau JM, Pastor JF, De Paz F, Barbosa MM, Ferrero EM, et al. Photographic and descriptive atlas of gibbons and siamangs (Hylobates) – with notes on the attachments, variations, innervation, synonymy and weight of the muscles. Oxford: Taylor & Francis; 2012.

    Google Scholar 

  45. 45.

    Diogo R, Potau JM, Pastor JF, De Paz F, Barbosa MM, Ferrero EM, et al. Photographic and descriptive atlas of chimpanzees (Pan) – with notes on the attachments, variations, innervation, synonymy and weight of the muscles. Oxford: Taylor & Francis; 2013.

    Google Scholar 

  46. 46.

    Diogo R, Potau JM, Pastor JF, De Paz F, Barbosa MM, Ferrero EM, et al. Photographic and descriptive atlas of orangutans (Pongo) – with notes on the attachments, variations, innervation, synonymy and weight of the muscles. Oxford: Taylor & Francis; 2013.

    Google Scholar 

  47. 47.

    Diogo R, Shearer B, Potau JM, Pastor JF, De Paz FJ, Arias–Martorell J, Turcotte C, Hammond a, Vereecke E, Vanhoof M, Nauwelaerts S, Wood B. Photographic and descriptive musculoskeletal atlas of bonobos – with notes on the weight, attachments, variations, and innervation of the muscles and comparisons with common chimpanzees and humans. New York: Springer; 2017.

  48. 48.

    Diogo R, Molnar JL, Wood B. Bonobo anatomy reveals stasis and mosaicism in chimpanzee evolution, and supports bonobos as the most appropriate extant model for the common ancestor of chimpanzees and humans. Sci Rep. 2017;7:608.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Diogo R, Wood BA. Soft tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles. J Anat. 2011;219:273–359.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Sataloff RT, Selber JC. Phylogeny and embryology of the facial nerve and related structures. Part II: embryology. Ear Nose Throat J. 2003;82:764–79.

    PubMed  Article  Google Scholar 

  51. 51.

    Bersu ET, Optiz JM. Anatomical analysis of the developmental effects of aneuploidy in man—the down syndrome. Am J Med Genet. 1980;5:399–420.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Standring S. Gray’s anatomy. The anatomical basis of clinical practice. 39th ed. New York: Elsevier Churchill Livingstone; 2005.

  53. 53.

    Schmidt HM. Transversus nuchae muscle: two observations of hitherto unknown deviations of its nerve supply. Anat Anz. 1981;151:144–50.

    Google Scholar 

  54. 54.

    Lei T, Cui L, Zhang Y, Shi G, Peng P, Wang X, et al. Anatomy of the transversus nuchae muscle and its relationship with the superficial musculoaponeurotic system. Plast Reconstr Surg. 2010;126:1058–62.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Watanabe K, Saga T, Iwanaga J, Tabira Y, Yamaki K. An anatomical study of the transversus nuchae muscle: application to better understanding occipital neuralgia. Clin Anat. 2017;30:32–8.

    PubMed  Article  Google Scholar 

  56. 56.

    Diogo R. Comparative anatomy, anthropology and archaeology as case studies on the influence of human biases in natural sciences: the origin of 'humans', of 'behaviorally modern humans' and of 'fully civilized humans'. Open Anatom J. 2020;2:86–97.

    Article  Google Scholar 

  57. 57.

    Diogo R. Links between the discovery of primates and anatomical comparisons with humans, the chain of being, our place in nature, and racism. J Morphol. 2018;278:472–93.

    Article  Google Scholar 

  58. 58.

    Seiler R. Muscles of the external ear and their function in man, chimpanzees and Macaca. Morphol Jahrb. 1974;120:78–122.

    CAS  Google Scholar 

  59. 59.

    Seiler R. Die Gesichtsmuskeln. In Hofer H, Schultz AH, Starck D, editors. Primatologia, Handbuch der Primatenkunde, Bd. 4, Lieferung 6. Basel: Karger; 1976. pp. 1–252.

  60. 60.

    Huber E, Hughson W. Experimental studies on the voluntary motor innervation of the facial musculature. J Comp Neurol. 1926;42:113–63.

    Article  Google Scholar 

  61. 61.

    Lightoller GS. The facial musculature of some lesser primates and a Tupaia. Proc Zool Soc London. 1934;104:259–309.

    Article  Google Scholar 

  62. 62.

    Hussey AJ, O’Sullivan ST. Auricularis inferior: another pointer to the facial nerve. Brit J Plast Surg. 2006;60:336–7.

    Google Scholar 

  63. 63.

    Sullivan WE, Osgood CW. The musculature of the superior extremity of the orang–utan, Simia satyrus. Anat Rec. 1927;35:193–239.

    Article  Google Scholar 

  64. 64.

    Patten CJ. Proceedings of the Anatomical Society of Great Britain and Ireland. J Anat. 1935;LXIX:147.

    Google Scholar 

  65. 65.

    Jouffroy FK. Musculature des membres. In: Grassé PP, editor. Traité de Zoologie, XVI: 3 (Mammifères). Paris: Masson et Cie; 1971. p. 1–475.

    Google Scholar 

  66. 66.

    Aziz MA. Possible atavistic structures in human aneuploids. Am J Phys Anthropol. 1981;54:347–53.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Jelev L, Landzhov B. A rare muscular variation: the third of the rhomboids. Anatomy. 2012–2013;6–7:63–4.

  68. 68.

    Rogawski KM. The rhomboideus capitis in man – correctly named rare muscular variation. Okajimas Folia Anat Jpn. 1990;67:161–4.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Zağyapan R, Pelin C, Mas N. A rare muscular variation: the occipito–scapularis muscle: case report. Turkiye Klinikleri J Med Sci. 2008;28:87–90.

    Google Scholar 

  70. 70.

    Stanchev S, Iliev A, Malinova L, Landzhov B. A rare case of bilateral occipitoscapular muscle. Acta morphologica et anthropologica. 2017;24:74–7.

    Google Scholar 

  71. 71.

    Lawrence DL, Bersu ET. An anatomical study of human otocephaly. Teratology. 1984;30:155–65.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Diogo R, Ziermann JM, Molnar JA, Siomava N, Abdala V. Muscles of chordates: development, homologies and evolution. Oxford: Taylor & Francis; 2018.

    Book  Google Scholar 

  73. 73.

    Leon X, Maranillo E, Quer M, Sañudo JR. Case report: cleidocervical or levator claviculae muscle. A new embryological explanation as to its origin. J Anat. 1995;187:503–4.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Diogo R, Abdala V. Muscles of vertebrates: comparative anatomy, evolution, homologies and development. Oxford: Taylor & Francis; 2010.

    Book  Google Scholar 

  75. 75.

    Loukas M, Sullivan A, Tubbs RS, Shoja MM. Levator claviculae: a case report and review of the literature. Folia Morphol (Warsz). 2008;67:307–10.

    CAS  Google Scholar 

  76. 76.

    Odate T, Kawai M, Iio K, Funayama S, Futamata H, Takeda A. Anatomy of the levator claviculae, with an overview and a literature survey. Anat Sci Int. 2012;87:203–11.

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Gruber W. Ein musculus cleido-cervicalis s. trachelo-clavicularis imus. Archiv Anat Phys Wissen Med. 1876;1876:757–8.

    Google Scholar 

  78. 78.

    Parsons FG. The muscles of mammals, with special relation to human myology. J Anat. 1898;32:428–50.

    CAS  Google Scholar 

  79. 79.

    Tomo S, Toh H, Hirakawa T, Tomo I, Kobayashi S. Case report: the cleidocervical muscle with speculation as to its origin. J Anat. 1994;184:165–9.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    McKenzie J. The morphology of the sternomastoid and trapezius muscles. J Anat. 1955;89:526–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Ginsberg LE, Eicher SA. Levator claviculae muscle presenting as a neck mass: CT imaging. J Comput Assist Tomogr. 1999;23:538–9.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Flower WH, Murie J. Account of the dissection of a Bushwoman. J Anat Physiol. 1867;1:189–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Feigl GC, Pixner T. The cleidoatlanticus muscle: a potential pitfall for the practice of ultrasound guided interscalene brachial plexus block. Surg Radiol Anat. 2011;33:823–5.

    PubMed  Article  Google Scholar 

  84. 84.

    Rüdisüli T. Demonstration of the musculus levator claviculae. Surg Radiol Anat. 1995;17:85–7.

    PubMed  Article  Google Scholar 

  85. 85.

    Rubinstein D, Escott EJ, Hendrick LL. The prevalence and CT appearance of the levator claviculae muscle: a normal variant not to be mistaken for an abnormality. J Neuroradiol. 1999;20:583–6.

    CAS  Google Scholar 

  86. 86.

    Santiago FR, Milena GL, Santos CC, Fernadez JMT. Levator claviculae muscle presenting as a hard clavicular mass: imaging study. Eur Radiol. 2001;11:2561–3.

    Article  Google Scholar 

  87. 87.

    Aydoğ S, Özçakar L, Demiryürek D, Bayramoğlu A, Yörübulut M. An intervening thoracic outlet syndrome in a gymnast with levator claviculae muscle. Clin J Sport Med. 2007;17:323–5.

    PubMed  Article  Google Scholar 

  88. 88.

    Kohlbrügge JHF. Versuch einer Anatomie des Genus Hylobates. In: Weber M, editor. Zoologische Ergebnisse Einer Reise in Niederländisch Ost-Indien. Leiden: Verlag von EJ Brill; 1890–1892. pp. 211–354 (Vol. 1), 138–208 (Vol. 2).

  89. 89.

    Chapman HC. On the structure of the gorilla. Proc Acad Nat Sci Philad. 1878;30:385–94.

    Google Scholar 

  90. 90.

    Chapman HC. On the structure of the chimpanzee. Proc Acad Nat Sci Philad. 1879;31:52–63.

    Google Scholar 

  91. 91.

    Chapman HC. On the structure of the orang outang. Proc Acad Nat Sci Philad. 1880;32:160–75.

    Google Scholar 

  92. 92.

    Chapman HC. Observations upon the anatomy of Hylobates leuciscus and Chiromys madagascariensis. Proc Acad Nat Sci Philad. 1900;52:414–23.

    Google Scholar 

  93. 93.

    Primrose A. The anatomy of the orang-outang (Simia satyrus), an account of some of its external characteristics, and the myology of the extremities. Trans Royal Can Inst. 1899;6:507–94.

    Google Scholar 

  94. 94.

    Primrose A. The anatomy of the orang outan. Toronto: University of Toronto Studies, Anatomical Series 1; 1900.

  95. 95.

    Grönroos H. Die musculi biceps brachii und latissimocondyloideus bei der affengattung Hylobates im vergleich mit den ensprechenden gebilden der anthropoiden und des menschen. Abh Kön Preuss Akad Wiss Berlin. 1903;1903:1–102.

    Google Scholar 

  96. 96.

    Sommer A. Das Muskelsystem des Gorilla. Jena Z Naturwiss. 1907;42:181–308.

    Google Scholar 

  97. 97.

    MacDowell EC. 1910. Notes on the myology of Anthropopithecus niger and Papio-thoth ibeanus. Am J Anat 1910;10:431–460.

  98. 98.

    Pira A. Beiträge zür Anatomie des Gorilla, I, Das Extremitätenmuskelsystem. Morphol Jahrb. 1913;47:309–54.

    Google Scholar 

  99. 99.

    Loth E. Anthropologie des parties molles (muscles, intestins, vaisseaux, nerfs peripheriques). Paris: Mianowski–Masson et Cie; 1931.

    Google Scholar 

  100. 100.

    Schück AC. Beiträge zur Myologie der Primaten, I – der m. lat. dorsi und der m. latissimo-tricipitalis. Morphol Jahrb. 1913;45:267–94.

    Google Scholar 

  101. 101.

    Fick R. Beobachtungen an den muskeln einger schimpansen. Z Anat Entwicklungsgesch. 1925;76:117–41.

    Article  Google Scholar 

  102. 102.

    Kallner M. Die muskulatur und die funktion des schultergurtels und der vorderextremitat des orang-utans. Morphol Jahrb. 1956;97:554–665.

    Google Scholar 

  103. 103.

    Preuschoft H. Muskeln and gelenk der vorderextremitat des gorillas. Morphol Jahrb. 1965;107:99–183.

    CAS  Google Scholar 

  104. 104.

    Haninec P, Tomás R, Kaiser R, Cihák R. Development and clinical significance of the musculus dorsoepitrochlearis in men. Clin Anat. 2009;22:481–8.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Barash BA, Freedman L, Optizj JM. Anatomic studies in the 18-trisomy syndrome. Birth Def. 1970;4:3–15.

    Google Scholar 

  106. 106.

    Aziz MA. Anatomical defects in a case of trisomy 13 with a D/D translocation. Teratology. 1980;22:217–27.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Naldaiz-Gastesi N, Bahri OA, López de Munain A, KJ MC, Izeta A. The panniculus carnosus muscle: an evolutionary enigma at the intersection of distinct research fields. J Anat. 2018;233:275–88.

    Article  Google Scholar 

  108. 108.

    Raven HC. Regional anatomy of the gorilla. In: Gregory WK, editor. The anatomy of the gorilla. New York: Columbia University Press; 1950. p. 15–188.

    Google Scholar 

  109. 109.

    Wilson TJ, Tubbs S, Yang LJS. The anconeus epitrochlearis muscle may protect against the development of cubital tunnel syndrome: a preliminary study. J Neurosurg. 2016;125:1522–38.

    Article  Google Scholar 

  110. 110.

    Galton JC. Note on the epitrochleo-anconeus or anconeus sextus (gruber). J Anat Physiol. 1874;9:168–75.

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Lewis OJ. Functional morphology of the evolving hand and foot. Oxford: Clarendon Press; 1989.

    Google Scholar 

  112. 112.

    Nascimento SRR, Ruiz CR. A study on the prevalence of the anconeus epitrochlearis muscle by magnetic resonance imaging. Rev Bras Ortop. 2018;53:373–7.

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Dunlap SS, Aziz MA, Rosenbaum KN. Comparative anatomical analysis of human trisomies 13, 18, and 21: I. The forelimb. Teratology. 1986;33:159–86.

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Tubbs RS, Salter EG, Oakes WJ. Contrahentes digitorum muscle. Clin Anat. 2005;18:606–8.

    PubMed  Article  Google Scholar 

  115. 115.

    Stark HH, Otter TA, Boyes JH, Rickard TA. Atavistic contrahentes digitorum and associated muscle abnormalities of the hand: a cause of symptoms. J Bone Jt Surg. 1979;61A:286–9.

    Article  Google Scholar 

  116. 116.

    Gibbs S. Comparative soft tissue morphology of the extant Hominoidea, including Man. Unpublished PhD Thesis, The University of Liverpool, Liverpool; 1999.

  117. 117.

    Ferrero EM, Pastor JF, Fernandez FP, Barbosa M, Diogo R, Wood B. Comparative anatomy of the lower limb muscles of hominoids: attachments, relative weights, innervation and functional morphology. In: Hughes EF, Hill ME, editors. Primates: classification, evolution and behavior. Hauppauge: Nova Science Publishers; 2012. p. 1–70.

    Google Scholar 

  118. 118.

    Jones CL. The morphogenesis of the thigh of the mouse with special reference to tetrapod muscle homologies. J Morphol. 1979;162:275–310.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Beck M, Sledge JB, Gautier E, Dora CF, Ganz R. The anatomy and function of the gluteus minimus muscle. J Bone Joint Surg (Br). 2000;82-B:358–63.

    Article  Google Scholar 

  120. 120.

    Woyski D, Olinger A, Wright B. Incidence of gluteus quartus in human cadavers. FASEB J. 2012;26(Supplement 1):57.

    Google Scholar 

  121. 121.

    Tichý M, Grim M. Morphogenesis of the human gluteus maximus muscle arising from two muscle primordia. Anat Embryol. 1985;173:275–7.

    PubMed  Article  Google Scholar 

  122. 122.

    Morimoto N. What could hominoid fetuses tell us about human evolution? Anat Rec. 2018;301:970–2.

    Article  Google Scholar 

  123. 123.

    Hirsch BE, Vekkos LE. Anomalous contrahentes muscles in human feet. Anat Anz. 1984;155:123–9.

    CAS  PubMed  Google Scholar 

  124. 124.

    Kafka RM, Aveytua IL, Fiacco RC, Ream GM, DiLandro AC, D’Antoni A. Intrinsic muscles of the foot. In: Tubbs RS, Shoja MM, Loukas M, editors. Bergman’s comprehensive encyclopedia of human anatomic variation. 1st ed. Hoboken: Wiley-Blackwell; 2016. p. 438–48.

    Chapter  Google Scholar 

  125. 125.

    Ferrero EM. Anatomía comparada del sistema muscular de la extremidad posterior en primates superiores. PhD Thesis, The University of Valladolid, Spain; 2011.

  126. 126.

    Kopuz C, Tetik S, Özbenli S. A rare anomaly of the abductor digiti minimi muscle of the foot. Cells Tissues Organs. 1999;164:174–6.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Swindler DR, Wood CD. An atlas of primate gross anatomy: baboon, chimpanzee and men. Seattle: University of Washington Press; 1973.

    Google Scholar 

  128. 128.

    Bardeen CR. Development and variation of the nerves and the musculature of the inferior extremity and of the neighboring regions of the trunk in man. Am J Anat. 1906;6:259–390.

    Article  Google Scholar 

  129. 129.

    Rana KK, Das S. Anomalous attachment of the flexor digiti minimi muscle of the foot: an anatomical study with clinical implications. Eur J Anat. 2006;10:153–5.

    Google Scholar 

  130. 130.

    Wood. J. Variations in human myology observed during the Winter Session of 1867–8 at King's College London. Proc Royal Soc. 1868;16:483–525.

  131. 131.

    Ramirez-Castro JL, Bersu ET. Anatomical analysis of the developmental effects of aneuploidy in man—the 18 trisomy syndrome: II. Anomalies of the upper and lower limbs. Am J Med Genet. 1978;2:285–306.

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Diogo R, Esteve-Altava B, Smith C, Boughner JC, Rasskin-Gutman D. Anatomical network comparison of human upper and lower, newborn and adult, and normal and abnormal limbs, with notes on development, Pathology and Limb Serial Homology vs Homoplasy. PLoS One. 2015;10:e0140030.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  133. 133.

    Christianson AL, Nelson MM. Four cases of trisomy 18 syndrome with limb reduction malformations. J Med Genet. 1984;21:293–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references


We would like to thank the numerous colleagues that have helped us in dissecting numerous human and nonhuman primates and undertaking comparative and phylogenetic analyses of the muscles of primates, in particular Bernard Wood.


This paper is part of a broader comparison of the hard and soft tissues of humans and other hominoids done within the Visible Ape Project NSF (1856329) Grant awarded to Rui Diogo (PI), which funds the postdoctoral research of Eve K. Boyle within this project.

Author information




Eve Boyle conducted the research and wrote the paper; Rui Diogo oversaw the research and edited the paper; Vondel Mahon provided an original anatomical illustration.

Corresponding author

Correspondence to Rui Diogo.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Evolutionary Developmental Biology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boyle, E.K., Mahon, V. & Diogo, R. Muscles Lost in Our Adult Primate Ancestors Still Imprint in Us: on Muscle Evolution, Development, Variations, and Pathologies. Curr Mol Bio Rep 6, 32–50 (2020).

Download citation


  • Primate evolution
  • Muscles
  • Soft tissues
  • Variations
  • Polymorphisms
  • Anomalies