Advertisement

Current Molecular Biology Reports

, Volume 5, Issue 1, pp 1–7 | Cite as

Interplay Between FGF23, Phosphate, and Molecules Involved in Phosphate Sensing

  • Nina Bon
  • Sarah Beck-Cormier
  • Laurent BeckEmail author
Molecular Control of Phosphorus Homeostasis (B van der Eerden, Section Editor)
  • 25 Downloads
Part of the following topical collections:
  1. Topical Collection on Molecular Control of Phosphorus Homeostasis

Abstract

Purpose of Review

Despite the important progress made in understanding the regulation of phosphate (Pi) homeostasis over the past 20 years, the mechanisms underlying the very early step leading to the regulating cascade involving multiple hormones (PTH, vitamin D, FGF23) and organs (kidney, intestine, bone, parathyroid glands) are not deciphered. Particularly, knowledge on the Pi-sensing mechanism present within or on the surface of the cell that is able to detect changes in serum or local Pi concentrations and trigger an appropriate FGF23 synthesis/secretion is limited or absent.

Recent Findings

Several molecular actors have recently been involved as potential key players in Pi sensing and Pi-dependent control of FGF23 secretion. Among them, the PiT1/Slc20a1 and PiT2/Slc20a2 proteins are standing out.

Summary

We are just beginning to accumulate in vitro and in vivo data that will provide invaluable molecular tools to explore and understand the integrated response of the body to variations of Pi concentration.

Keywords

Phosphate sensing FGF23 Slc20a1 Slc20a2 

Notes

Funding Information

This work was supported by grants from Institut National de la Santé et de la Recherche Médicale (INSERM), Région des Pays de la Loire (grants “Nouvelle Equipe/Nouvelle Thématique”, “Senseo,” and “Adipos”).

Compliance with Ethical Standards

Conflict of Interest

Nina Bon, Sarah Beck-Cormier, and Laurent Beck each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26:345–8.CrossRefGoogle Scholar
  2. 2.
    Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000;277:494–8.CrossRefGoogle Scholar
  3. 3.
    • Richter B, Faul C. FGF23 actions on target tissues-with and without Klotho. Front Endocrinol (Lausanne). 2018;9:189. Extensive and up-to-date review on the roles of FGF23 not restricted to its role on Pi homeostasis. CrossRefGoogle Scholar
  4. 4.
    Kawai M, Kinoshita S, Ozono K, Michigami T. Inorganic phosphate activates the AKT/mTORC1 pathway and shortens the life span of an α-Klotho-deficient model. J Am Soc Nephrol. 2016;27:2810–24.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Erben RG. Update on FGF23 and Klotho signaling. Mol Cell Endocrinol. Elsevier Ireland Ltd. 2016;432:56–65.Google Scholar
  6. 6.
    Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.CrossRefGoogle Scholar
  7. 7.
    Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 2011;25:2551–62.CrossRefGoogle Scholar
  8. 8.
    Christov M, Jüppner H. Insights from genetic disorders of phosphate homeostasis. Semin Nephrol. 2013;33:143–57.CrossRefGoogle Scholar
  9. 9.
    Goldsweig BK, Carpenter TO. Hypophosphatemic rickets: lessons from disrupted FGF23 control of phosphorus homeostasis. Curr Osteoporos Rep. 2015;13:88–97.CrossRefGoogle Scholar
  10. 10.
    Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.CrossRefGoogle Scholar
  11. 11.
    Razzaque MS. Phosphate toxicity: new insights into an old problem. Clin Sci. 2011;120:91–7.CrossRefGoogle Scholar
  12. 12.
    Lau WL, Pai A, Moe SM, Giachelli CM. Direct effects of phosphate on vascular cell function. Adv Chronic Kidney Dis. Elsevier Ltd. 2011;18:105–12.Google Scholar
  13. 13.
    Ito N, Fukumoto S, Takeuchi Y, Takeda S, Suzuki H, Yamashita T, et al. Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J Bone Miner Metab. 2007;25:419–22.CrossRefGoogle Scholar
  14. 14.
    Kolek OI. 1α,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol. 2005;289:G1036–42.CrossRefGoogle Scholar
  15. 15.
    Shigematsu T, Kazama JJ, Yamashita T, Fukumoto S, Hosoya T, Gejyo F, et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis. 2004;44:250–6.CrossRefGoogle Scholar
  16. 16.
    Xiao Z, Huang J, Cao L, Liang Y, Han X, Quarles LD. Osteocyte-specific deletion of Fgfr1 suppresses FGF23. PLoS One. 2014;9:e104154.CrossRefGoogle Scholar
  17. 17.
    Wolf M, White KE. Coupling fibroblast growth factor 23 production and cleavage. Curr Opin Nephrol Hypertens. 2014;23:411–9.CrossRefGoogle Scholar
  18. 18.
    David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int, Nature Publishing Group. 2015;1–12.Google Scholar
  19. 19.
    Ito N, Wijenayaka AR, Prideaux M, Kogawa M, Ormsby RT, Evdokiou A, et al. Molecular and cellular endocrinology. Mol Cell Endocrinol. Elsevier Ireland Ltd. 2015;399:208–18.Google Scholar
  20. 20.
    Ferrari SL, Bonjour J-P, Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab. 2005;90:1519–24.CrossRefGoogle Scholar
  21. 21.
    Burnett SAM, Gunawardene SC, Bringhurst FR, Jüppner H, Lee H, Finkelstein JS. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21:1187–96.CrossRefGoogle Scholar
  22. 22.
    Antoniucci DM, Yamashita T, Portale AA. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab. 2006 ed. 2006;91:3144–9.Google Scholar
  23. 23.
    Scanni R, von Rotz M, Jehle S, Hulter HN, Krapf R. The human response to acute enteral and parenteral phosphate loads. J Am Soc Nephrol. 2014;25:2730–9.CrossRefGoogle Scholar
  24. 24.
    Saito H, Maeda A, Ohtomo S-I, Hirata M, Kusano K, Kato S, et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280:2543–9.CrossRefGoogle Scholar
  25. 25.
    Perwad F, Azam N, Zhang MYH, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology. 2005;146:5358–64.CrossRefGoogle Scholar
  26. 26.
    •• Bon N, Frangi G, Sourice S, Guicheux J, Beck-Cormier S, Beck L. Phosphate-dependent FGF23 secretion is modulated by PiT2/Slc20a2. Mol Metab. 2018;2018:1–8. First demonstration, in vitro, ex vivo, and in vivo of a direct role of PiT2 in Pi-dependent FGF23 secretion. Google Scholar
  27. 27.
    Nishino J, Yamazaki M, Kawai M, Tachikawa K, Yamamoto K, Miyagawa K, et al. Extracellular phosphate induces the expression of dentin matrix protein 1 through the FGF receptor in osteoblasts. J Cell Biochem. 2017;118:1151–63.CrossRefGoogle Scholar
  28. 28.
    Hori M, Kinoshita Y, Taguchi M, Fukumoto S. Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells. J Bone Miner Metab. 2015;34:132–9.CrossRefGoogle Scholar
  29. 29.
    Ito N, Findlay DM, Anderson PH, Bonewald LF, Atkins GJ. Extracellular phosphate modulates the effect of 1α,25-dihydroxy vitamin D3 (1,25D) on osteocyte like cells. J Steroid Biochem Mol Biol. 2013;136:183–6.CrossRefGoogle Scholar
  30. 30.
    Liu S, Tang W, Fang J, Ren J, Li H, Xiao Z, et al. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol. 2009;23:1505–18.CrossRefGoogle Scholar
  31. 31.
    • Camalier CE, Yi M, Yu L-R, Hood BL, Conrads KA, Lee YJ, et al. An integrated understanding of the physiological response to elevated extracellular phosphate. J Cell Physiol. 2013;228:1536–50. Extensive study on the Pi-dependent signaling pathways and gene expression in a pre-osteoblastic cell line. CrossRefGoogle Scholar
  32. 32.
    Miyagawa K, Yamazaki M, Kawai M, Nishino J, Koshimizu T, Ohata Y, et al. Dysregulated gene expression in the primary osteoblasts and osteocytes isolated from hypophosphatemic Hyp mice. PLoS One. 2014;9:e93840.CrossRefGoogle Scholar
  33. 33.
    Kato K, Jeanneau C, Tarp MA, Benet-Pagès A, Lorenz-Depiereux B, Bennett EP, et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem. 2006;281:18370–7.CrossRefGoogle Scholar
  34. 34.
    • Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A. 2014;111:5520–4. Elegant paper on the post-translational regulation of FGF23. CrossRefGoogle Scholar
  35. 35.
    Chefetz I, Kohno K, Izumi H, Uitto J, Richard G, Sprecher E. GALNT3, a gene associated with hyperphosphatemic familial tumoral calcinosis, is transcriptionally regulated by extracellular phosphate and modulates matrix metalloproteinase activity. Biochim Biophys Acta. 2008 ed. 2009;1792:61–7.Google Scholar
  36. 36.
    Beck G, Zerler B, Moran E. Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci U S A. 2000;97:8352–7.CrossRefGoogle Scholar
  37. 37.
    Beck G, Moran E, Knecht N. Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2. Exp Cell Res. 2003;288:288–300.CrossRefGoogle Scholar
  38. 38.
    Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci. 2011;68:205–18.CrossRefGoogle Scholar
  39. 39.
    •• Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a signaling molecule and its sensing mechanism. Physiol Rev. 2018;98:2317–48. Most up-to-date and comprehensive review on Pi sensing and Pi sensors in mammals and other species. CrossRefGoogle Scholar
  40. 40.
    Julien M, Magne D, Masson M, Rolli-Derkinderen M, Chassande O, Cario-Toumaniantz C, et al. Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology. 2007;148:530–7.CrossRefGoogle Scholar
  41. 41.
    Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF, et al. Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res. 2009;24:1856–68.CrossRefGoogle Scholar
  42. 42.
    Khoshniat S, Bourgine A, Julien M, Petit M, Pilet P, Rouillon T, et al. Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone. Elsevier Inc. 2011;48:894–902.Google Scholar
  43. 43.
    Kimata M, Michigami T, Tachikawa K, Okada T, Koshimizu T, Yamazaki M, et al. Signaling of extracellular inorganic phosphate up-regulates cyclin D1 expression in proliferating chondrocytes via the Na(+)/Pi cotransporter Pit-1 and Raf/MEK/ERK pathway. Bone. 2010;47:938–47.CrossRefGoogle Scholar
  44. 44.
    Yamazaki M, Ozonoa K, Okada T, Tachikawa K, Kondou H, Ohata Y, et al. Both FGF23 and extracellular phosphate activate Raf/MEK/ERK pathway via FGF receptors in HEK293 cells. J Cell Biochem. 2010;111:1210–21.CrossRefGoogle Scholar
  45. 45.
    Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res. Elsevier. 2015;333:39–48.Google Scholar
  46. 46.
    • Bon N, Couasnay G, Bourgine A, Sourice S, Beck-Cormier S, Guicheux J, et al. Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake. J Biol Chem. 2018;293:2102–14. First demonstration that Pi-dependent ERK signaling depends both on PiT1 and PiT2, and that low-abundant PiT1-PiT2 heterodimers are Pi-responsive. CrossRefGoogle Scholar
  47. 47.
    Chang S, Yu K, Lee Y, An G, Beck G, Colburn N, et al. Elevated inorganic phosphate stimulates Akt-ERK1/2-Mnk1 signaling in human lung cells. Am J Respir Cell Mol Biol. 2006;35:528–39.CrossRefGoogle Scholar
  48. 48.
    • Chande S, Bergwitz C. Role of phosphate sensing in bone and mineral metabolism. Nat Rev Endocrinol. 2018:1–19. Extended review on Pi sensing with a strong focus on clinical aspects. Google Scholar
  49. 49.
    Qi W, Baldwin SA, Muench SP, Baker A. Pi sensing and signalling: from prokaryotic to eukaryotic cells. Biochem Soc Trans. 2016;44:766–73.CrossRefGoogle Scholar
  50. 50.
    Saiardi A, Erdjument-Bromage H, Snowman AM, Tempst P, Snyder SH. Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol. 1999;9:1323–6.CrossRefGoogle Scholar
  51. 51.
    Saiardi A, Nagata E, Luo HR, Snowman AM, Snyder SH. Identification and characterization of a novel inositol hexakisphosphate kinase. J Biol Chem. 2001;276:39179–85.CrossRefGoogle Scholar
  52. 52.
    Norbis F, Boll M, Stange G, Markovich D, Verrey F, Biber J, et al. Identification of a cDNA/protein leading to an increased Pi-uptake in Xenopus laevis oocytes. J Membr Biol. 1997;156:19–24.CrossRefGoogle Scholar
  53. 53.
    Kestenbaum B, Glazer NL, Köttgen A, Felix JF, Hwang S-J, Liu Y, et al. Common genetic variants associate with serum phosphorus concentration. J Am Soc Nephrol. 2010;21:1223–32.CrossRefGoogle Scholar
  54. 54.
    Gu C, Nguyen H-N, Hofer A, Jessen HJ, Dai X, Wang H, et al. The significance of the bifunctional kinase/phosphatase activities of diphosphoinositol pentakisphosphate kinases (PPIP5Ks) for coupling inositol pyrophosphate cell signaling to cellular phosphate homeostasis. J Biol Chem. 2017;292:4544–55.CrossRefGoogle Scholar
  55. 55.
    Ichikawa S, Austin AM, Gray AK, Econs MJ. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells. J Bone Miner Res. 2012;27:453–60.CrossRefGoogle Scholar
  56. 56.
    Ichikawa S, Gerard-O’Riley RL, Acton D, McQueen AK, Strobel IE, Witcher PC, et al. A mutation in the Dmp1 gene alters phosphate responsiveness in mice. Endocrinology. 2017;158:470–6.PubMedGoogle Scholar
  57. 57.
    Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci U S A. 1994;91:7071–5.CrossRefGoogle Scholar
  58. 58.
    Miller DG, Miller AD. A family of retroviruses that utilize related phosphate transporters for cell entry. J Virol. 1994;68:8270–6.PubMedPubMedCentralGoogle Scholar
  59. 59.
    O’Hara B, Johann SV, Klinger HP, Blair DG, Rubinson H, Dunn KJ, et al. Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ. 1990;1:119–27.PubMedGoogle Scholar
  60. 60.
    Van Zeijl M, Johann SV, Closs E, Cunningham J, Eddy R, Shows TB, et al. A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc Natl Acad Sci U S A. 1994;91:1168–72.CrossRefGoogle Scholar
  61. 61.
    Miller DG, Edwards RH, Miller AD. Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc Natl Acad Sci U S A. 1994;91:78–82.CrossRefGoogle Scholar
  62. 62.
    Wagner CA, Hernando N, Forster IC, Biber J. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch. 2013;466:139–53.CrossRefGoogle Scholar
  63. 63.
    Forster IC, Hernando N, Biber J, Murer H. Molecular aspects of medicine. Mol Asp Med. 2013 ed. 2013;34:386–95.Google Scholar
  64. 64.
    Miyamoto K, Tatsumi S, Segawa H, Morita K, Nii T, Fujioka A, et al. Regulation of PiT-1, a sodium-dependent phosphate co-transporter in rat parathyroid glands. Nephrol Dial Transplant. 1999;14(Suppl 1):73–5.CrossRefGoogle Scholar
  65. 65.
    Miyamoto K, Ito M, Segawa H, Kuwahata M. Secondary hyperparathyroidism and phosphate sensing in parathyroid glands. J Med Investig. 2000;47:118–22.Google Scholar
  66. 66.
    Tatsumi S, Segawa H, Morita K, Haga H, Kouda T, Yamamoto H, et al. Molecular cloning and hormonal regulation of PiT-1, a sodium-dependent phosphate cotransporter from rat parathyroid glands. Endocrinology. 1998;139:1692–9.CrossRefGoogle Scholar
  67. 67.
    Bourgine A, Colombeix C, Couasnay G, Masson M, Weiss P, Beck-Cormier S, et al. Involvement of PiT1 and PiT2 in the phosphate sensing in osteoblastic cells. Bone. 2012;50:S70.CrossRefGoogle Scholar
  68. 68.
    Salaün C, Gyan E, Rodrigues P, Heard JM. Pit2 assemblies at the cell surface are modulated by extracellular inorganic phosphate concentration. J Virol. 2002;76:4304–11.CrossRefGoogle Scholar
  69. 69.
    Salaün C, Maréchal V, Heard JM. Transport-deficient Pit2 phosphate transporters still modify cell surface oligomers structure in response to inorganic phosphate. J Mol Biol. 2004;340:39–47.CrossRefGoogle Scholar
  70. 70.
    Yamasaki S, Yagishita N, Tsuchimochi K, Kato Y, Sasaki T, Amano T, et al. Resistance to endoplasmic reticulum stress is an acquired cellular characteristic of rheumatoid synovial cells. Int J Mol Med. 2006;18:113–7.PubMedGoogle Scholar
  71. 71.
    •• Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, et al. Structural mechanism of ligand activation in human calcium-sensing receptor. Elife. 2016;5:e13662 First demonstration of the presence of PO 4 binding sites on the CaSR that may play a role either on Pi sensing or Pi homeostasis. CrossRefGoogle Scholar
  72. 72.
    Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, et al. Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol. 2009;20:2348–58.CrossRefGoogle Scholar
  73. 73.
    Berndt T, Thomas L, Craig T, Sommer S, Li X, Bergstralh E, et al. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci U S A. 2007;104:11085–90.CrossRefGoogle Scholar
  74. 74.
    Kumar R. Phosphate sensing. Curr Opin Nephrol Hypertens. 2009;18:281–4.CrossRefGoogle Scholar
  75. 75.
    Sabbagh Y, Schiavi SC. Role of NPT2b in health and chronic kidney disease. Curr Opin Nephrol Hypertens. 2014;23:377–84.CrossRefGoogle Scholar
  76. 76.
    Tenenhouse HS, Martel J, Gauthier C, Zhang M, Portale AA. Renal expression of the sodium/phosphate cotransporter gene, Npt2, is not required for regulation of renal 1α-hydroxylase by phosphate. Endocrinology. Endocrine Soc. 2001;142:1124–9.Google Scholar
  77. 77.
    Battini JL, Rasko JE, Miller AD. A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proc Natl Acad Sci U S A. 1999;96:1385–90.CrossRefGoogle Scholar
  78. 78.
    •• Giovannini D, Touhami J, Charnet P, Sitbon M, Battini J-L. Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep. The Authors. 2013;3:1866–73. Identification and characterization of the first Pi exporter in mammals. Google Scholar
  79. 79.
    Ghillebert R, Swinnen E, De Snijder P, Smets B, Winderickx J. Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem J. 2011;434:243–51.CrossRefGoogle Scholar
  80. 80.
    Hürlimann HC, Pinson B, Stadler-Waibel M, Zeeman SC, Freimoser FM. The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. EMBO Rep. 2009;10:1003–8.CrossRefGoogle Scholar
  81. 81.
    •• Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, et al. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science. 2016;352:986–90. Essential role of intracellular inositol polyphosphates in controlling intracelluar Pi homeostasis. CrossRefGoogle Scholar
  82. 82.
    Ansermet C, Moor MB, Centeno G, Auberson M, Hu DZ, Baron R, et al. Renal Fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron. J Am Soc Nephrol. 2017;28:1073–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Inserm, UMR 1229, RMeS, Regenerative Medicine and SkeletonUniversité de Nantes, ONIRISNantesFrance
  2. 2.Université de Nantes, UFR OdontologieNantesFrance

Personalised recommendations