Skip to main content
Log in

Omics Contributions to the Molecular Mechanisms Regulating Bone Marrow Adipocyte Differentiation

  • Molecular Biology of Bone Marrow Fat Adiposity (B van der Eerden, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

A shift in the commitment of human skeletal stem cells (SSCs) from the osteogenic lineage to the adipogenic lineage can result in increased marrow adiposity and bone loss. Advances in understanding the fate decision of SSCs and particularly the intracellular mechanisms controlling bone marrow adipocyte (BMA) differentiation have thus relevance to bone disorders. The aim of this review is to report the recent contributions of Omics studies to the understanding of mechanisms controlling human BMA differentiation.

Recent Findings

Omics investigations allow the identification of factors involved in BMA differentiation, some of them already known to have relevance for adipogenesis and others not, and highlight the crucial role of epigenetic regulation in the control of SSCs lineage determination.

Summary

There is a great potential in the use of Omics technologies for a better understanding of BMA differentiation. To draw a more complete picture of this process, efforts must be made in the standardization, compilation, and integration of data from different fields. Further expected outcome is the future identification of biomarkers or therapeutic targets in the context of bone disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hardouin P, Marie PJ, Rosen CJ. New insights into bone marrow adipocytes: report from the first European meeting on bone marrow adiposity (BMA 2015). Bone. 2016;93:212–5. https://doi.org/10.1016/j.bone.2015.11.013.

    Article  PubMed  Google Scholar 

  2. van der Eerden B, van Wijnen A. Meeting report of the 2016 bone marrow adiposity meeting. Adipocyte. 2017;6(4):1–10. https://doi.org/10.1080/21623945.2017.1313374.

    Google Scholar 

  3. Veldhuis-Vlug AG, Rosen CJ. Mechanisms of marrow adiposity and its implications for skeletal health. Metabolism. 2017;67:106–14. https://doi.org/10.1016/j.metabol.2016.11.013.

    Article  CAS  PubMed  Google Scholar 

  4. Hardouin P, Pansini V, Cortet B. Bone marrow fat. Joint Bone Spine. 2014;81(4):313–9. https://doi.org/10.1016/j.jbspin.2014.02.013.

    Article  PubMed  Google Scholar 

  5. Bianco P, Robey PG. Skeletal stem cells. Development. 2015;142(6):1023–7. https://doi.org/10.1242/dev.102210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;7(7):1128–39. https://doi.org/10.1038/cdd.2015.168.

    Article  Google Scholar 

  7. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem. 2006;98(2):251–66. https://doi.org/10.1002/jcb.20777.

    Article  CAS  PubMed  Google Scholar 

  8. Abdallah BM, Kassem M. New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone. 2012;50(2):540–5. https://doi.org/10.1016/j.bone.2011.06.030.

    Article  CAS  PubMed  Google Scholar 

  9. Muruganandan S, Sinal CJ. The impact of bone marrow adipocytes on osteoblast and osteoclast differentiation. IUBMB Life. 2014;66(3):147–55. https://doi.org/10.1002/iub.;1254.

    Article  CAS  Google Scholar 

  10. Sadie-Van Gijsen H, Hough FS, Ferris WF. Determinants of bone marrow adiposity: the modulation of peroxisome proliferator-activated receptor- γ2 activity as a central mechanism. Bone. 2013;56(2):255–65. https://doi.org/10.1016/j.bone.2013.06.016.

    Article  CAS  PubMed  Google Scholar 

  11. •• Tencerova M, Kassem M. The bone marrow-derived stromal cells: commitment and regulation of adipogenesis. Front Endocrinol (Lausanne). 2016;7:127. https://doi.org/10.3389/fendo.2016.00127. This review presents a summary of the information regarding the bone marrow adipocyte characterization and provides a comprehensive overview of mechanisms of SSCs lineage commitment to adipocyte lineage.

    Google Scholar 

  12. Teven CM, Liu X, Hu N, Tang N, Kim SH, Huang E, et al. Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011;2011:201371–18. https://doi.org/10.4061/2011/201371.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Berendsen AD, Olsen BR. Osteoblast-adipocyte lineage plasticity in tissue development, maintenance and pathology. Cell Mol Life Sci. 2014;71(3):493–7. https://doi.org/10.1007/s00018-013-1440-z.

    Article  CAS  PubMed  Google Scholar 

  14. Perez-Campo FM, Riancho JA. Epigenetic mechanisms regulating mesenchymal stem cell differentiation. Curr Genomics. 2015;16(6):368–83. https://doi.org/10.2174/1389202916666150817202559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tye CE, Gordon JA, Martin-Buley LA, Stein JL, Lian JB, Stein GS. Could lncRNAs be the missing links in control of mesenchymal stem cell differentiation? J Cell Physiol. 2015;230(3):526–34. https://doi.org/10.1002/jcp.24834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshioka H, Yoshiko Y. The roles of long non-protein-coding RNAs in osteo-adipogenic lineage commitment. Int J Mol Sci. 2017;18(6):1236. https://doi.org/10.3390/ijms18061236.

    Article  PubMed Central  Google Scholar 

  17. Debnath Mousumi, Prasad GBKS, Bisen PS. Omics technology. In: Molecular Diagnostics: Promises and Possibilities. Dordrech Heidelberg London: Springer, 2010 p. 11–31. Doi: https://doi.org/10.1007/978-90-481-3261-4.

  18. •• Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform 2016:1–17. doi: https://doi.org/10.1093/bib/bbw114. This study provides an overview of the current strengths and weaknesses of Omics technologies.

  19. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. https://doi.org/10.1038/nrg2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Graves PR, Haystead TAJ. Molecular biologist’s guide to proteomic. Microbiol Mol Biol Rev. 2002;66(1):39–63. https://doi.org/10.1128/MMBR.66.1.39-63.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. •• Han Y, He X. Integrating epigenomics into the understanding of biomedical insight. Bioinform Biol Insights. 2016;10:267–89. https://doi.org/10.4137/BBI.S38427. This paper provides a comprehensive review of epigenetic mechanisms, epigenomics data generation, and integrative analysis approaches.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705. https://doi.org/10.1016/j.cell.2007.02.005.

    Article  CAS  PubMed  Google Scholar 

  23. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. https://doi.org/10.1038/npp.2012.112.

    Article  CAS  PubMed  Google Scholar 

  24. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J. 2011;278(10):1598–609. https://doi.org/10.1111/j.1742-4658.2011.08089.

    Article  CAS  PubMed  Google Scholar 

  25. Cao J. The functional role of long non-coding RNAs and epigenetics. Biological Procedures Online. 2014;16(1):11. https://doi.org/10.1186/1480-9222-16-11.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu X, Li X, Yan R, Jiang H, Wang T, Fan L, et al. Gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenesis. Folia Histochem Cytobiol. 2016;54(1):14–24. https://doi.org/10.5603/FHC.a2016.0003.

    PubMed  Google Scholar 

  27. • Casado-Diaz A, Anter J, Müller S, Winter P, Quesada-Gomez JM, Dorado G. Transcriptomic analyses of adipocyte differentiation from human mesenchymal stromal-cells (MSC). J Cell Physiol. 2016;9999(4):1–14. https://doi.org/10.1002/jcp.25472. This study describes a combine transcriptome and miRNAOme investigation of adipocyte differentiation from SSCs, associated with networks analysis.

    Google Scholar 

  28. Ullah M, Stich S, Häupl T, Eucker J, Sittinger M, Ringe J. Reverse differentiation as a gene filtering tool in genome expression profiling of adipogenesis for fat marker gene selection and their analysis. PLoS One. 2013;8(7):e69754. https://doi.org/10.1371/journal.pone.0069754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van de Peppel J, Strini T, Tilburg J, Westerhoff H, van Wijnen AJ, van Leeuwen JP. Identification of three early phases of cell-fate determination during osteogenic and adipogenic differentiation by transcription factor dynamics. Stem Cell Reports. 2017;8(4):947–60. https://doi.org/10.1016/j.stemcr.2017.02.018.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee HK, Lee BH, Park SA, Kim CW. The proteomic analysis of an adipocyte differentiated from human mesenchymal stem cells using two-dimensional gel electrophoresis. Proteomics. 2006;6(4):1223–9. https://doi.org/10.1002/pmic.200500385.

    Article  CAS  PubMed  Google Scholar 

  31. Jeong JA, Ko KM, Park HS, Lee J, Jang C, Jeon CJ, et al. Membrane proteomic analysis of human mesenchymal stromal cells during adipogenesis. Proteomics. 2007;7(22):4181–91. https://doi.org/10.1002/pmic.200700502.

    Article  CAS  PubMed  Google Scholar 

  32. Clabaut A, Grare C, Leger T, Hardouin P, Broux O. Variations of secretome profiles according to conditioned medium preparation : the example of human mesenchymal stem cell-derived adipocytes. Electrophoresis. 2015;36(20):2587–93. https://doi.org/10.1002/elps.201500086.

    Article  CAS  PubMed  Google Scholar 

  33. Friedman RC, Farh KKH, Burge CB, Bartel DP. Mammalian mRNAs are conserved targets of MicroRNAs. Genome Res. 2009;19(1):92–105. https://doi.org/10.1101/gr.082701.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kang H, HATA A. The role of microRNAs in cell fate determination of mesenchymal stem cells: balancing adipogenesis and osteogenesis. BMB Rep. 2015;48(6):319–23. https://doi.org/10.5483/BMBRep.2015.48.6.206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hamam D, Ali D, Kassem M, Aldahmash A, Alajez NM. microRNAs as regulators of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev. 2015;24(4):417–25. https://doi.org/10.1089/scd.2014.0331.

    Article  CAS  PubMed  Google Scholar 

  36. Saidi N, Ghalavand M, Hashemzadeh MS, Dorostkar R, Mohammadi H, Mahdian-Shakib A. Dynamic changes of epigenetic signatures during chondrogenic and adipogenic differentiation of mesenchymal stem cells. Biomed Pharmacother. 2017;89:719–31. https://doi.org/10.1016/j.biopha.2017.02.093.

    Article  CAS  PubMed  Google Scholar 

  37. Tsai CH, Liao KH, Shih CC, Chan CH, Hsieh JY, Tsai CF, et al. Small RNA and RNA-IP sequencing identifies and validates novel MicroRNAs in human mesenchymal stem cells. OMICS. 2016;20(3):191–8. https://doi.org/10.1089/omi.2015.0136.

    Article  CAS  PubMed  Google Scholar 

  38. Hamam D, Ali D, Vishnubalaji R, Hamam R, Al-Nbaheen M, Chen L, et al. MicroRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells. Cell death and Dis. 2014;5(10):e1499. https://doi.org/10.1038/cddis.2014.462.

    Article  CAS  Google Scholar 

  39. • You L, Pan L, Chen L, Gu W, Chen J. MiR-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis. Cell Physiol Biochem. 2016;39(1):253–65. https://doi.org/10.1159/000445621. The only study showing a link between perturbations in circulating miRNA levels in serum of osteoporosis patients and in vitro altered adipocyte/osteoblast balance.

    Article  CAS  PubMed  Google Scholar 

  40. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS J. 2009;276(8):2348–58. https://doi.org/10.1111/j.1742-4658.2009.06967.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papk C, Ailhaud G, et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun. 2009;390(2):247–51. https://doi.org/10.1016/j.bbrc.2009.09.098.

    Article  CAS  PubMed  Google Scholar 

  42. Kang T, Lu W, Xu W, Anderson L, Bacanamwo M, Thompson W, et al. MicroRNA-27 (miR-27) targets Prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem. 2013;288(48):34394–402. https://doi.org/10.1074/jbc.M113.514372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deng P, Chen QM, Hong C, Wang CY. Histone methyltransferases and demethylases: regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells. Int J Oral Sci. 2015;7(4):197–204. https://doi.org/10.1038/ijos.2015.41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang B, Li G, Jiang XH. Fate determination in mesenchymal stem cells: a perspective from histone-modifying enzymes. Stem Cell Res Ther. 2015;6(1):35. https://doi.org/10.1186/s13287-015-0018-0.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ali D, Hamam R, Halfayez M, Kassem M, Aldahmash A, Alajez NM. Epigenetic library screen identifies Abexinostat as novel regulator of adipocytic and osteoblastic differentiation of human skeletal (mesenchymal) stem cells. Stem Cells Transl Med. 2016;5(8):1036–47. https://doi.org/10.5966/sctm.2015.0331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ali D, Alshammari H, Vishnubalaji R, Chalisserry EP, Hamam R, Alfayez M, et al. CUCDC-907 promotes bone marrow adipocytic differentiation through inhibition of histone deacetylase and regulation of cell cycle. Stem Cells Dev. 2017;26(5):353–62. https://doi.org/10.1089/scd.2016.0183.

    Article  CAS  PubMed  Google Scholar 

  47. Chen YH, Yeh FL, Yeh SP, Ma HT, Hung SC, Hung MC, et al. Myocyte enhancer factor-2 interacting transcriptional repressor (MITR) is a switch that promotes osteogenesis and inhibits adipogenesis of mesenchymal stem cells by inactivating peroxisome proliferator-activated receptor 2. J Biol Chem. 2011;286(12):10671–80. https://doi.org/10.1074/jbc.M110.199612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hemming S, Cakouros D, Isenmann S, Cooper L, Menicanin D, Zannettino A, et al. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells. 2014;32(3):802–15. https://doi.org/10.1002/stem.1573.

    Article  CAS  PubMed  Google Scholar 

  49. Zhu XX, Yan YW, Chen D, Ai CZ, Lu X, Xu SS, et al. Long non-coding RNA HoxA-AS3 interacts with EZH2 to regulate lineage commitment of mesenchymal stem cells. Oncotarget. 2016;7(39):63561–70. https://doi.org/10.18632/oncotarget.11538.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bian Q, Cahan P. Computational tools for stem cell biology. Trends Biotechnol. 2016;34(12):993–1009. https://doi.org/10.1016/j.tibtech.2016.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kelsey G, Stegle O, Reik W. Single-cell epigenomics: recording the past and predicting the future. Science. 2017;358(6359):69–75. https://doi.org/10.1126/science.aan6826.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odile Broux.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Biology of Bone Marrow Fat Adiposity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clabaut, A., Broux, O. Omics Contributions to the Molecular Mechanisms Regulating Bone Marrow Adipocyte Differentiation. Curr Mol Bio Rep 4, 1–7 (2018). https://doi.org/10.1007/s40610-018-0085-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-018-0085-y

Keywords

Navigation