Skip to main content
Log in

Bone Lining Cells: Normal Physiology and Role in Response to Anabolic Osteoporosis Treatments

  • Molecular Biology of Skeletal Development (T Bellido, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this chapter is to review the proposed roles for bone lining cells in bone homeostasis. We will focus on how these cells contribute to normal bone remodeling and how they might participate in bone anabolic responses to osteoporosis therapies.

Recent Findings

Lineage tracing methodologies have recently demonstrated that quiescent bone lining cells can directly convert into active matrix-forming osteoblasts in the setting of treatment with parathyroid hormone and anti-sclerostin antibody.

Summary

Bone lining cells are an abundant yet poorly studied cell type in bone. They most likely participate in normal bone remodeling and have important roles in responses to osteoanabolic osteoporosis treatments and in skeletal repair after injury. Novel models are needed to selectively ablate and interrogate the function of specific genes in bone lining cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Miller SC, et al. Bone lining cells: structure and function. Scanning Microsc. 1989;3(3):953–60. discussion 960-1

    CAS  PubMed  Google Scholar 

  2. Miller SC, Jee WS. The bone lining cell: a distinct phenotype? Calcif Tissue Int. 1987;41(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  3. Miller SC, et al. Characterization of endosteal bone-lining cells from fatty marrow bone sites in adult beagles. Anat Rec. 1980;198(2):163–73.

    Article  CAS  PubMed  Google Scholar 

  4. Dierkes C, et al. Catabolic properties of microdissected human endosteal bone lining cells. Calcif Tissue Int. 2009;84(2):146–55.

    Article  CAS  PubMed  Google Scholar 

  5. Canas F, Terepka AR, Neuman WF. Potassium and milieu interieur of bone. Am J Phys. 1969;217(1):117–20.

    CAS  Google Scholar 

  6. Talmage RV. Morphological and physiological considerations in a new concept of calcium transport in bone. Am J Anat. 1970;129(4):467–76.

    Article  CAS  PubMed  Google Scholar 

  7. Hauge EM, et al. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res. 2001;16(9):1575–82.

    Article  CAS  PubMed  Google Scholar 

  8. Everts V, et al. The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res. 2002;17(1):77–90.

    Article  CAS  PubMed  Google Scholar 

  9. Ducy P, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747–54.

    Article  CAS  PubMed  Google Scholar 

  10. Motyckova G, Fisher DE. Pycnodysostosis: role and regulation of cathepsin K in osteoclast function and human disease. Curr Mol Med. 2002;2(5):407–21.

    Article  CAS  PubMed  Google Scholar 

  11. Nioi P, et al. Transcriptional profiling of laser capture microdissected subpopulations of the osteoblast lineage provides insight into the early response to sclerostin antibody in rats. J Bone Miner Res. 2015;30(8):1457–67.

    Article  CAS  PubMed  Google Scholar 

  12. Ma S, Dai Y. Principal component analysis based methods in bioinformatics studies. Brief Bioinform. 2011;12(6):714–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med. 2016;374(3):254–62.

    Article  CAS  PubMed  Google Scholar 

  14. Reid IR. Short-term and long-term effects of osteoporosis therapies. Nat Rev Endocrinol. 2015;11(7):418–28.

    Article  CAS  PubMed  Google Scholar 

  15. Shane E, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014;29(1):1–23.

    Article  PubMed  Google Scholar 

  16. Neer RM, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    Article  CAS  PubMed  Google Scholar 

  17. Jilka RL, et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest. 1999;104(4):439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nishida S, et al. Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone. 1994;15(6):717–23.

    Article  CAS  PubMed  Google Scholar 

  19. Wu X, et al. Inhibition of Sca-1-positive skeletal stem cell recruitment by alendronate blunts the anabolic effects of parathyroid hormone on bone remodeling. Cell Stem Cell. 2010;7(5):571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005;37(2):148–58.

    Article  CAS  PubMed  Google Scholar 

  21. Bellido, T., et al., Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology, 2005;146(11):4577–83.

  22. Fan, Y., et al., Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab, 2017.

  23. Dobnig H, Turner RT. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology. 1995;136(8):3632–8.

    Article  CAS  PubMed  Google Scholar 

  24. Leaffer D, et al. Modulation of osteogenic cell ultrastructure by RS-23581, an analog of human parathyroid hormone (PTH)-related peptide-(1-34), and bovine PTH-(1-34). Endocrinology. 1995;136(8):3624–31.

    Article  CAS  PubMed  Google Scholar 

  25. Madisen L, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13(1):133–40.

    Article  CAS  PubMed  Google Scholar 

  26. Maes C, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010;19(2):329–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. •• Kim SW, et al. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J Bone Miner Res. 2012;27(10):2075–84. Here, lineage tracing was first used to demonstrate that lining cells derive from mature osteoblasts. Moreover, genetically labeled lining cells had the capacity to become osteoblasts after intermittent PTH treatment

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller PD, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316(7):722–33.

    Article  CAS  PubMed  Google Scholar 

  29. Cosman, F., et al., Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med, 2016.

  30. McClung MR, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370(5):412–20.

    Article  CAS  PubMed  Google Scholar 

  31. Brunkow ME, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68(3):577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Balemans W, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39(2):91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Estrada K, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rivadeneira F, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41(11):1199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92.

    Article  CAS  PubMed  Google Scholar 

  36. Ke HZ, et al. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev. 2012;33(5):747–83.

    Article  CAS  PubMed  Google Scholar 

  37. • Ominsky MS, et al. Tissue-level mechanisms responsible for the increase in bone formation and bone volume by sclerostin antibody. J Bone Miner Res. 2014;29(6):1424–30. Histomorphometry was used to demonstrate that sclerostin antibody treatment dramatically reduces quiescent bone surfaces. These findings set the stage for subsequent lineage tracing studies to ask whether sclerostin antibody might directly activate bone lining cells

    Article  CAS  PubMed  Google Scholar 

  38. Ominsky MS, et al. Differential temporal effects of sclerostin antibody and parathyroid hormone on cancellous and cortical bone and quantitative differences in effects on the osteoblast lineage in young intact rats. Bone. 2015;81:380–91.

    Article  CAS  PubMed  Google Scholar 

  39. •• Kim, S.W., et al., Sclerostin antibody administration converts bone lining cells into active osteoblasts. J Bone Miner Res, 2016. Lineage tracing was used to track endosteal and periosteal lining cell responses to sclerostin antibody. Like PTH, sclerostin antibody directly converts quiescent bone lining cells to active matrix-forming osteoblasts.

  40. • Matic, I., et al., Quiescent bone lining cells are a major source of osteoblasts during adulthood. Stem Cells, 2016. Lineage tracing was used to demonstrate that lining cells can contribute to osteoblastogenesis in the setting of osteoblast ablation.

  41. •• Zhang, J. and D.C. Link, Targeting of mesenchymal stromal cells by Cre-recombinase transgenes commonly used to target osteoblast lineage cells. J Bone Miner Res, 2016. An important study that clearly illustrates some major technical limitations associated with lineage tracing techniques. Specifically, “osteoblast-specific” Cre driver lines show robust activity in multiple non-osteoblastic cell types.

  42. Taylor S, et al. Time-dependent cellular and transcriptional changes in the osteoblast lineage associated with sclerostin antibody treatment in ovariectomized rats. Bone. 2016;84:148–59.

    Article  CAS  PubMed  Google Scholar 

  43. Ono N, Kronenberg HM. Bone repair and stem cells. Curr Opin Genet Dev. 2016;40:103–7.

    Article  CAS  PubMed  Google Scholar 

  44. Visnjic D, et al. Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice. J Bone Miner Res. 2001;16(12):2222–31.

    Article  CAS  PubMed  Google Scholar 

  45. Ozcivici E, et al. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol. 2010;6(1):50–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robling AG, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75.

    Article  CAS  PubMed  Google Scholar 

  47. Tu X, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012;50(1):209–17.

    Article  CAS  PubMed  Google Scholar 

  48. Chow JW, et al. Mechanical loading stimulates bone formation by reactivation of bone lining cells in 13-week-old rats. J Bone Miner Res. 1998;13(11):1760–7.

    Article  CAS  PubMed  Google Scholar 

  49. Mavrogenis AF, et al. Side effects of radiation in musculoskeletal oncology: clinical evaluation of radiation-induced fractures. Int J Immunopathol Pharmacol. 2011;24(1 Suppl 2):29–37.

    Article  PubMed  Google Scholar 

  50. Dominici M, et al. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood. 2009;114(11):2333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Turner RT, et al. Acute exposure to high dose gamma-radiation results in transient activation of bone lining cells. Bone. 2013;57(1):164–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Power RA, et al. Basic fibroblast growth factor has rapid bone anabolic effects in ovariectomized rats. Osteoporos Int. 2004;15(9):716–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc N. Wein.

Ethics declarations

Conflict of Interest

Marc N. Wein declares no potential conflict of interest.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on the Molecular Biology of Skeletal Development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wein, M.N. Bone Lining Cells: Normal Physiology and Role in Response to Anabolic Osteoporosis Treatments. Curr Mol Bio Rep 3, 79–84 (2017). https://doi.org/10.1007/s40610-017-0062-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-017-0062-x

Keywords

Navigation