Skip to main content
Log in

On the Non-vanishing of the Powers of the Euler Class for Mapping Class Groups

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

The mapping class group of an orientable closed surface with one marked point can be identified, by the Nielsen action, with a subgroup of the group of orientation-preserving homeomorphisms of the circle. This inclusion pulls back the “discrete universal Euler class” producing a non-zero class in the second integral cohomology of the mapping class group. In this largely expository note, we determine the non-vanishing behavior of the powers of this class. Our argument relies on restricting the cohomology classes to torsion subgroups of the mapping class group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson, D.J., Cohen, F.R.: Mapping class groups of low genus and their cohomology. Mem. Am. Math. Soc. 90(443), iv+104 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Bödigheimer, C.F., Tillmann, U.: Stripping and splitting decorated mapping class groups. Cohomological methods in homotopy theory (Bellaterra, 1998), 47–57, Progr. Math., 196, Birkhäuser, Basel, (2001)

  3. Faber, C.: A conjectural description of the tautological ring of the moduli space of curves. In Moduli of Curves and Abelian Varieties, Aspects Math., E33, pages 109–129. Friedr. Vieweg, Braunschweig, (1999)

  4. Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series 49. Princeton University Press, Princeton (2012)

    Google Scholar 

  5. Ghys, E.: Groups acting on the circle. Enseign. Math. (2) 47(3–4), 329–407 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Glover, H., Mislin, G.: Torsion in the mapping class group and its cohomology. Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985). J. Pure Appl. Algebra 44(1-3), 177–189 (1987)

  7. Hain, R., Looijenga, E.: Mapping class groups and moduli spaces of curves. Algebraic geometry-Santa Cruz. Proc. Sympos. Pure. Math. AMS 62, 97–142 (1997)

    Article  Google Scholar 

  8. Handel, M., Thurston, W.: New proofs of some results of Nielsen. Adv. Math. 56(2), 173–191 (1985)

    Article  MathSciNet  Google Scholar 

  9. Harer, J.L.: The second homology group of the mapping class group of an orientable surface. Invent. Math. 72, 221–239 (1983)

    Article  MathSciNet  Google Scholar 

  10. Harer, J.L.: Stability of the homology of the mapping class groups of orientable surfaces. Ann. of Math. (2) 121(2), 215–249 (1985)

    Article  MathSciNet  Google Scholar 

  11. Ionel, E.-N.: Topological recursive relations in \(H^{2g}({\cal{M}}_{g, n})\). Invent. Math. 148, 627–658 (2002)

    Article  MathSciNet  Google Scholar 

  12. Jekel, S.: Vanishing powers of the Euler class. Topology. 40, 871–926 (2001)

    Article  MathSciNet  Google Scholar 

  13. Jekel, S.: Powers of the Euler class. Adv. Math. 229, 1949–1975 (2012)

    Article  MathSciNet  Google Scholar 

  14. Korkmaz, M., Stipsicz, A.I.: The second homology group of mapping class groups of oriented surfaces. Math. Proc. Cambridge Philos. Soc. 134, 479–489 (2003)

    Article  MathSciNet  Google Scholar 

  15. Looijenga, E.: On the tautological ring of \({{\cal{M}}}_g\). Invent. Math 121, 411–419 (1995)

    Article  MathSciNet  Google Scholar 

  16. Lu, Q.: Periodicity of the punctured mapping class group. J. Pure Appl. Algebra 155(2–3), 211–235 (2001)

    Article  MathSciNet  Google Scholar 

  17. Lu, Q.: Farrell cohomology of low genus pure mapping class groups with punctures. Algebr. Geom. Topol. 2, 537–562 (2002)

    Article  MathSciNet  Google Scholar 

  18. MacLane, S.: Homology. Reprint of the 1975 edition. Springer-Verlag, Berlin-New York. 422 pp (1994)

  19. Madsen, I., Weiss, M.: The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. of Math. (2), 165 (2007)

  20. Mather, J.N.: The vanishing of the homology of certain groups of homeomorphisms. Topology 10, 297–298 (1971)

    Article  MathSciNet  Google Scholar 

  21. Miller, E.Y.: The homology of the mapping class group. J. Differ. Geom. 24(1), 1–14 (1986)

    Article  MathSciNet  Google Scholar 

  22. Milnor, J.: Introduction to algebraic K-theory. Annals of Mathematics Studies, No. 72. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo. xiii+184 pp (1971)

  23. Morita, S.: Characteristic classes of surface bundles. Invent. Math. 90(3), 551–577 (1987)

    Article  MathSciNet  Google Scholar 

  24. Thurston, W.: Foliations and groups of diffeomorphisms. Bull. Am. Math. Soc. 80, 304–307 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for constructive comments and questions, and Lei Chen, Benson Farb, Jesús Hernández Hernández and Justin Lanier for useful email communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Jiménez Rolland.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rita Jiménez Rolland is grateful for the financial support from PAPIIT DGAPA-UNAM grant IA104010 and from CONACYT grant CB-2017-2018-A1-S-30345-F-3125.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jekel, S., Rolland, R.J. On the Non-vanishing of the Powers of the Euler Class for Mapping Class Groups. Arnold Math J. 7, 159–168 (2021). https://doi.org/10.1007/s40598-020-00159-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-020-00159-3

Keywords

Navigation