Trace Test
Research Contribution
First Online:
Received:
Revised:
Accepted:
- 3 Downloads
Abstract
The trace test in numerical algebraic geometry verifies the completeness of a witness set of an irreducible variety in affine or projective space. We give a brief derivation of the trace test and then consider it for subvarieties of products of projective spaces using multihomogeneous witness sets. We show how a dimension reduction leads to a practical trace test in this case involving a curve in a low-dimensional affine space.
Keywords
Trace test Witness set Numerical algebraic geometryMathematics Subject Classification
65H10References
- Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, Vol. I, Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer, New York (1985)Google Scholar
- Brake, D. A., Hauenstein, J. D., and Liddell, A. C.: Decomposing solution sets of polynomial systems using derivatives, In: Greuel G.M., Koch T., Paule P., Sommese A. (eds.) Mathematical Software ICMS 2016. ICMS 2016. Lecture Notes in Computer Science, vol. 9725, pp. 127–135. Springer International Publishing, Cham (2016)Google Scholar
- Harris, J.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 133. Springer, New York (1992)CrossRefGoogle Scholar
- Hauenstein, J.D., and Rodriguez, J.I.: Multiprojective witness sets and a trace test, (2015). arXiv:1507.07069
- Hauenstein, J.D., Sommese, A.J.: Witness sets of projections. Appl. Math. Comput. 217(7), 3349–3354 (2010)MathSciNetMATHGoogle Scholar
- Jouanolou, J.: Théorèmes de Bertini et applications, Progress in Mathematics, vol. 42. Birkhäuser Boston Inc., Boston (1983)MATHGoogle Scholar
- Lazarsfeld, R.: Positivity in Algebraic Geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 48. Springer, Berlin (2004)Google Scholar
- Sommese, A.J., Verschelde, J.: Numerical homotopies to compute generic points on positive dimensional algebraic sets. J. Complex. 16(3), 572–602 (2000)MathSciNetCrossRefMATHGoogle Scholar
- Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38(6), 2022–2046 (2001)MathSciNetCrossRefMATHGoogle Scholar
- Sommese, A.J., Verschelde, J., Wampler, C.W.: Symmetric functions applied to decomposing solution sets of polynomial systems. SIAM J. Numer. Anal. 40(6), 2026–2046 (2002)MathSciNetCrossRefMATHGoogle Scholar
- Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005)CrossRefMATHGoogle Scholar
Copyright information
© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2018