Arnold Mathematical Journal

, Volume 3, Issue 1, pp 97–117 | Cite as

Convex Shapes and Harmonic Caps

Research Contribution
  • 101 Downloads

Abstract

Any planar shape \(P\subset {\mathbb {C}}\) can be embedded isometrically as part of the boundary surface S of a convex subset of \(\mathbb {R}^3\) such that \(\partial P\) supports the positive curvature of S. The complement \(Q = S {\setminus } P\) is the associated cap. We study the cap construction when the curvature is harmonic measure on the boundary of \(({\hat{{\mathbb {C}}}}{\setminus } P, \infty )\). Of particular interest is the case when P is a filled polynomial Julia set and the curvature is proportional to the measure of maximal entropy.

Keywords

Julia set Convex shape Polyhedra Harmonic measure Curvature 

References

  1. Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York (1973)Google Scholar
  2. Aleksandrov, A.D.: Vnutrennyaya Geometriya Vypuklyh Poverhnosteĭ. OGIZ, Moscow (1948)Google Scholar
  3. Alexandroff, A.: Existence of a convex polyhedron and of a convex surface with a given metric. Rec. Math. [Mat. Sbornik] N.S. 11(53), 15–65 (1942)Google Scholar
  4. Alexandrov, A.D.: Convex polyhedra. Springer Monographs in Mathematics. Springer, Berlin (2005) (translated from the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze and A. B. Sossinsky, with comments and bibliography by V. A. Zalgaller and appendices by L. A. Shor and Yu. A. Volkov)Google Scholar
  5. Bartholdi, L.: Personal communication (2015)Google Scholar
  6. Bobenko, A.I., Izmestiev, I.: Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes. Ann. Inst. Fourier (Grenoble) 58(2), 447–505 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. Brolin, H.: Invariant sets under iteration of rational functions. Ark. Mat. 6(103–144), 1965 (1965)MathSciNetMATHGoogle Scholar
  8. Connelly, R., Demaine, E.D., Rote, G.: Straightening polygonal arcs and convexifying polygonal cycles. Discrete Comput. Geom. 30(2), 205–239 (2003) [U.S.-Hungarian Workshops on Discrete Geometry and Convexity (Budapest, 1999/Auburn, AL, 2000)]Google Scholar
  9. Demaine, E.D., O’Rourke, J.: A survey of folding and unfolding in computational geometry. In: Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ., vol. 52, pp. 167–211. Cambridge Univ. Press, Cambridge (2005)Google Scholar
  10. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms. Cambridge University Press, Cambridge (2007) (Linkages, origami, polyhedra)Google Scholar
  11. DeMarco, L.: Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity. Math. Ann. 326(1), 43–73 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. Duren, P.L.: Univalent functions. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259. Springer, New York (1983)Google Scholar
  13. Fornæss, J.E., Sibony, N.: Complex dynamics in higher dimensions. In: Complex Potential Theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 439, pp. 131–186. Kluwer Acad. Publ., Dordrecht (1994) (Notes partially written by Estela A. Gavosto)Google Scholar
  14. Freire, A., Lopes, A., Mañé, R.: An invariant measure for rational maps. Bol. Soc. Brasil. Mat. 14(1), 45–62 (1983)MathSciNetCrossRefMATHGoogle Scholar
  15. Hubbard, J., Papadopol, P.: Superattractive fixed points in \({ c}^n\). Indiana Univ. Math. J. 43, 321–365 (1994)MathSciNetCrossRefMATHGoogle Scholar
  16. Hubbard, J.H.: Teichmüller theory and applications to geometry, topology, and dynamics, vol. 1. Matrix Editions, Ithaca (2006). Teichmüller theory, with contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra, with forewords by William Thurston and Clifford EarleGoogle Scholar
  17. Ju, M.: Ljubich. Entropy properties of rational endomorphisms of the Riemann sphere. Ergodic Theory Dyn. Syst. 3(3), 351–385 (1983)Google Scholar
  18. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. American Mathematical Society, Providence (1973) (translated from the Russian by Israel Program for Scientific Translations, Translations of Mathematical Monographs, vol. 35)Google Scholar
  19. Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299. Springer, Berlin (1992)Google Scholar
  20. Rešetnjak, Ju.G.: Isothermal coordinates on manifolds of bounded curvature. I, II. Sibirsk. Mat. Ž. 1, 88–116, 248–276 (1960)Google Scholar
  21. Reshetnyak, Yu.G.: Two-dimensional manifolds of bounded curvature. In: Geometry, IV, Encyclopedia Math. Sci., vol. 70 , pp. 3–163, 245–250. Springer, Berlin (1993)Google Scholar
  22. Series, C.: Thurston’s bending measure conjecture for once punctured torus groups. In: Spaces of Kleinian Groups, London Math. Soc. Lecture Note Ser., vol. 329, pp. 75–89. Cambridge Univ. Press, Cambridge (2006)Google Scholar
  23. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. II, 2nd edn. Publish or Perish Inc, Wilmington (1979)MATHGoogle Scholar
  24. Thurston, W.P.: Shapes of polyhedra and triangulations of the sphere. In: The Epstein Birthday Schrift, Geom. Topol. Monogr., vol. 1, pp. 511–549. Geom. Topol. Publ., Coventry (1998)Google Scholar
  25. The Sage Developers. Sage Mathematics Software (Version 6.10.beta7) (2016). http://www.sagemath.org
  26. Van Andel, E., Bradshaw, R.: Riemann mapping [sage mathematics software package] (2011)Google Scholar

Copyright information

© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2017

Authors and Affiliations

  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA
  2. 2.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations