Natural Language Generation Using Deep Learning to Support MOOC Learners

Abstract

Among all the learning resources within MOOCs such as video lectures and homework, the discussion forum stood out as a valuable platform for students’ learning through knowledge exchange. However, peer interactions on MOOC discussion forums are scarce. The lack of interactions among MOOC learners can yield negative effects on students’ learning, causing low participation and high dropout rate. This research aims to examine the extent to which the deep-learning-based natural language generation (NLG) models can offer responses similar to human-generated responses to the learners in MOOC forums. Specifically, under the framework of social support theory, this study has examined the use of state-of-the-art deep learning models recurrent neural network (RNN) and generative pretrained transformer 2 (GPT-2) to provide students with informational, emotional, and community support with NLG on discussion forums. We first trained an RNN and GPT-2 model with 13,850 entries of post-reply pairs. Quantitative evaluation on model performance was then conducted with word perplexity, readability, and coherence. The results showed that GPT-2 outperformed RNN on all measures. We then qualitatively compared the dimensions of support provided by humans and GPT-2, and the results suggested that the GPT-2 model can comparably provide emotional and community support to human learners with contextual replies. We further surveyed participants to find out if the collected data would align with our findings. The results showed GPT-2 model could provide supportive and contextual replies to a similar extent compared to humans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adelani, D. I., Mai, H., Fang, F., Nguyen, H. H., Yamagishi, J., & Echizen, I. (2020). Generating sentiment-preserving fake online reviews using neural language models and their human-and machine-based detection. In International Conference on Advanced Information Networking and Applications (pp. 1341–1354). Cham: Springer.

    Google Scholar 

  2. Alimova, I., & Tutubalina, E. (2020). Multiple features for clinical relation extraction: A machine learning approach. Journal of Biomedical Informatics, 103, 103382.

    Article  Google Scholar 

  3. Almatrafi, O., Johri, A., & Rangwala, H. (2018). Needle in a haystack: Identifying learner posts that require urgent response in MOOC discussion forums. Computers & Education, 118, 1–9. https://doi.org/10.1016/j.compedu.2017.11.002.

    Article  Google Scholar 

  4. Babori, A., Zaid, A., & Fassi, H. F. (2019). Research on MOOCs in major referred journals. The International Review of Research in Open and Distributed Learning, 20, 3. https://doi.org/10.19173/irrodl.v20i4.4385.

    Article  Google Scholar 

  5. Benamara, F., & Saint-Dizier, P. (2004). Advanced relaxation for cooperative question answering. In M. T. Maybury (Ed.), New directions in question answering (pp. 263–274). Menlo Park: AAAI Press.

    Google Scholar 

  6. Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of Machine Learning Research, 3, 1137–1155 http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf. Accessed 10 December 2019.

    MATH  Google Scholar 

  7. Budzianowski, P., & Vulić, I. (2019). Hello, It’s GPT-2—How can I help you? Towards the use of pretrained language models for task-oriented dialogue systems. In A. Birch, A. Finch, H. Hayashi, I. Konstas, T. Luong, G. Neubig, Y. Oda, & K. Sudoh (Eds), Proceedings of the 3rd Workshop on Neural Generation and Translation (pp. 15–22). Association for Computational Linguistics. https://doi.org/10.18653/v1/d19-5602.

  8. Caballé, S., & Conesa, J. (2019). Conversational Agents in Support for Collaborative Learning in MOOCs: An Analytical Review. In F. Xhafa, L. Barolli, & M. Greguš (Eds.), Advances in Intelligent Networking and Collaborative Systems. INCoS 2018. Lecture notes on data engineering and communications technologies (Vol. 23). Cham: Springer.

    Google Scholar 

  9. Chiu, T. K., & Hew, T. K. (2018). Factors influencing peer learning and performance in MOOC asynchronous online discussion forum. Australasian Journal of Educational Technology, 34(4), 16–28. https://doi.org/10.14742/ajet.3240.

    Article  Google Scholar 

  10. Clark, E., Celikyilmaz, A., Smith, N. A. (2019). Sentence mover’s similarity: Automatic evaluation for multi-sentence texts. In A. Korhonen, D. Traum, & L. Màrquez (Eds), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2748–2760. Association for Computational Linguistics. doi:https://doi.org/10.18653/v1/P19-1264.

  11. Cleveland-Innes, M., & Campbell, P. (2012). Emotional presence, learning, and the online learning environment. The International Review of Research in Open and Distributed Learning, 13(4), 269–292.

    Article  Google Scholar 

  12. Cutrona, C. E., & Russell, D. W. (1990). Type of social support and specific stress: Toward a theory of optimal matching. In B. R. Sarason, I. G. Sarason, & G. R. Pierce (Eds.), Wiley series on personality processes. Social support: An interactional view (pp. 319–366). New York: John Wiley & Sons. Retrieved 10 Jan 2020, from https://psycnet.apa.org/record/1990-97699-013

  13. Dale, R. (2016). The return of the chatbots. Natural Language Engineering, 22(5), 811–817. https://doi.org/10.1017/S1351324916000243.

    Article  Google Scholar 

  14. Deetjen, U., & Powell, J. A. (2016). Informational and emotional elements in online support groups: A Bayesian approach to large-scale content analysis. Journal of the American Medical Informatics Association, 23(3), 508–513. https://doi.org/10.1093/jamia/ocv190.

    Article  Google Scholar 

  15. Demetriadis, S., Tegos, S., Psathas, G., Tsiatsos, T., Weinberger, A., Caballé, S., … Karakostas, A. (2018). Conversational Agents as Group-Teacher Interaction Mediators in MOOCs. Proceedings of 2018 Learning With MOOCS (LWMOOCS), 43–46. https://doi.org/10.1109/lwmoocs.2018.8534686.

  16. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv Preprint ArXiv, 1810, 04805.

    Google Scholar 

  17. Du, X., Shao, J., & Cardie, C. (2017). Learning to ask: Neural question generation for reading comprehension. ArXiv Preprint ArXiv, 1705, 00106.

    Google Scholar 

  18. Dubosson, M., & Emad, S. (2015). The forum community, the Connectivist element of an xMOOC. Universal Journal of Educational Research, 3(10), 680–690. https://doi.org/10.13189/ujer.2015.031004.

    Article  Google Scholar 

  19. Dufty, D. F., Graesser, A. C., Louwerse, M. M., McNamara, D. S. (2006). Assigning grade levels to textbooks: Is it just readability? Proceedings of the Annual Meeting of the Cognitive Science Society, 28, 1251–1256. Retrieved 10 Jan 2020, from https://escholarship.org/uc/item/44f184z9.

  20. Evans, R., Piwek, P., Cahill, L. (2002). What is NLG? Proceedings of the International Natural Language Generation Conference, 144–151. Retrieved 21 Dec 2019, from https://www.aclweb.org/anthology/W02-2119.pdf.

  21. Evermann, J., Rehse, J.-R., & Fettke, P. (2016). A deep learning approach for predicting process behaviour at runtime. In M. Dumas, & M. Fantinato (Eds), Proceedings of International Conference on Business Process Management, Vol. 281 (pp. 327–338). Springer. https://doi.org/10.1007/978-3-319-58457-7_24.

  22. Fang, A., Macdonald, C., Ounis, I., & Habel, P. (2016). Using word embedding to evaluate the coherence of topics from twitter data. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1057–1060. https://doi.org/10.1145/2911451.2914729.

  23. Fedus, W., Goodfellow, I., & Dai, A. M. (2018). MaskGAN: Better text generation via filling in the_. ArXiv Preprint ArXiv, 1801, 07736.

    Google Scholar 

  24. Feng, L., Jansche, M., Huenerfauth, M., Elhadad, N. (2010). A comparison of features for automatic readability assessment. Proceedings of the 23rd International Conference on Computational Linguistics: Posters, 276–284. Retrieved 24 Dec 2019, from https://dl.acm.org/doi/pdf/10.5555/1944566.1944598.

  25. Ferschke, O., Yang, D., Tomar, G., Rosé, C. P. (2015). Positive impact of collaborative chat participation in an edX MOOC. In C. Conati, N. Heffernan, A. Mitrovic, & M. Verdejo (Eds), Proceedings of International Conference on Artificial Intelligence in Education, Vol. 9112, 115–124. Springer. https://doi.org/10.1007/978-3-319-19773-9_12.

  26. Goldie, J. G. S. (2016). Connectivism: A knowledge learning theory for the digital age? Medical Teacher, 38(10), 1064–1069. https://doi.org/10.3109/0142159X.2016.1173661.

    Article  Google Scholar 

  27. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT press.

    Google Scholar 

  28. Graves, A. (2013). Generating sequences with recurrent neural networks. ArXiv Preprint ArXiv, 1308, 0850.

    Google Scholar 

  29. Hew, K. F. (2016). Promoting engagement in online courses: What strategies can we learn from three highly rated MOOCS. British Journal of Educational Technology, 47(2), 320–341. https://doi.org/10.1111/bjet.12235.

    Article  Google Scholar 

  30. House, J. S. (1981). Work stress and social support. Massachusetts: Addison-Wesley.

    Google Scholar 

  31. Hsu, J.-Y., Chen, C.-C., & Ting, P.-F. (2018). Understanding MOOC continuance: An empirical examination of social support theory. Interactive Learning Environments, 26(8), 1100–1118. https://doi.org/10.1080/10494820.2018.1446990.

    Article  Google Scholar 

  32. Indurthi, S. R., Raghu, D., Khapra, M. M., Joshi, S. (2017). Generating natural language question-answer pairs from a knowledge graph using a RNN based question generation model. In M. Lapata, P. Blunsom, & A. Koller (Eds), Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers (pp. 376-385). Association for Computational Linguistics. https://doi.org/10.18653/v1/e17-1036.

  33. Io, H. N., & Lee, C. B. (2017). Chatbots and conversational agents: Proceedings of 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 215–219. https://doi.org/10.1109/ieem.2017.8289883.

  34. Jung, Y., & Lee, J. (2018). Learning engagement and persistence in massive open online courses (MOOCS). Computers & Education, 122, 9–22. https://doi.org/10.1016/j.compedu.2018.02.013.

    Article  Google Scholar 

  35. Kincaid, J. P., Fishburne Jr, R. P., Rogers, R. L., Chissom, B. S. (1975). Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel. Institute for Simulation and Training, University of Central Florida. https://doi.org/10.21236/ada006655.

  36. Kop, R., Fournier, H., & Mak, J. S. F. (2011). A pedagogy of abundance or a pedagogy to support human beings? Participant support on massive open online courses. The International Review of Research in Open and Distributed Learning, 12(7), 74–93. https://doi.org/10.19173/irrodl.v12i7.1041.

    Article  Google Scholar 

  37. Kumar, R., & Rose, C. P. (2010). Architecture for building conversational agents that support collaborative learning. IEEE Transactions on Learning Technologies, 4(1), 21–34. https://doi.org/10.1109/TLT.2010.41.

    Article  Google Scholar 

  38. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. ArXiv Preprint ArXiv, 1909, 11942.

    Google Scholar 

  39. Langford, C. P. H., Bowsher, J., Maloney, J. P., & Lillis, P. P. (1997). Social support: A conceptual analysis. Journal of Advanced Nursing, 25(1), 95–100. https://doi.org/10.1046/j.1365-2648.1997.1997025095.x.

    Article  Google Scholar 

  40. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https://doi.org/10.1038/nature14539.

    Article  Google Scholar 

  41. Lee, Y., & Choi, J. (2011). A review of online course dropout research: Implications for practice and future research. Educational Technology Research and Development, 59(5), 593–618. https://doi.org/10.1007/s11423-010-9177-y.

    Article  Google Scholar 

  42. Lee, J. S., & Hsiang, J. (2019). Patent claim generation by fine-tuning openai GPT-2. ArXiv preprint arXiv, 1907, 02052.

    Google Scholar 

  43. Lin, C.-P., & Anol, B. (2008). Learning online social support: An investigation of network information technology based on UTAUT. Cyberpsychology & Behavior, 11(3), 268–272. https://doi.org/10.1089/cpb.2007.0057.

    Article  Google Scholar 

  44. Lipari, M., Berlie, H., Saleh, Y., Hang, P., & Moser, L. (2019). Understandability, actionability, and readability of online patient education materials about diabetes mellitus. American Journal of Health-System Pharmacy, 76(3), 182–186.

    Article  Google Scholar 

  45. Mackness, J., Waite, M., Roberts, G., & Lovegrove, E. (2013). Learning in a small, task–oriented, connectivist MOOC: Pedagogical issues and implications for higher education. The International Review of Research in Open and Distributed Learning, 14(4), 140–159.

    Article  Google Scholar 

  46. Masters, K. (2011). A brief guide to understanding MOOCs. The Internet Journal of Medical Education, 1(2), 1–6. https://doi.org/10.5580/1f21.

    Article  Google Scholar 

  47. McKeown, K. R. (1982). The TEXT system for natural language generation: An overview. Proceedings of the 20th Annual Meeting on Association for Computational Linguistics, 113–120. https://doi.org/10.3115/981251.981285.

  48. McNamara, D. S., Graesser, A. C., McCarthy, P. M., Cai, Z. (2014). Automated evaluation of text and discourse with Coh-Metrix. Cambridge University Press. https://doi.org/10.1017/cbo9780511894664.

  49. Mikolov, T., Karafiát, M., Burget, L., Černocký, J., Khudanpur, S. (2010). Recurrent neural network based language model. Paper presented at the Eleventh Annual Conference of the International Speech Communication Association. https://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf. Accessed 10 December 2019.

  50. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J. (2013a). Distributed representations of words and phrases and their compositionality. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Weinberger (Eds), Advances in Neural Information Processing Systems: Vol. 26 (pp. 3111–3119). Retrieved 23 Dece 2019, from https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

  51. Mikolov, T., Yih, W. T., Zweig, G. (2013b). Linguistic regularities in continuous space word representations. In R. Morante & S. Yih (Eds), Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies (pp. 746–751). Association for Computational Linguistics. https://doi.org/10.3115/v1/w14-1618.

  52. Mittal, A., Vigentini, L., Djatmiko, M., Prusty, G., Sharma, Y., King, M. E. (2018). MOOC-O-Bot: Using Cognitive Technologies to Extend Knowledge Support in MOOCs. Proceedings of the 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), 69–76. https://doi.org/10.1109/tale.2018.8615453.

  53. Moore, R. L., Oliver, K. M., & Wang, C. (2019). Setting the pace: Examining cognitive processing in MOOC discussion forums with automatic text analysis. Interactive Learning Environments, 27(5–6), 655–669. https://doi.org/10.1080/10494820.2019.1610453.

    Article  Google Scholar 

  54. Ortega-Arranz, A., Bote-Lorenzo, M. L., Asensio-Pérez, J. I., Martínez-Monés, A., Gómez-Sánchez, E., & Dimitriadis, Y. (2019). To reward and beyond: Analyzing the effect of reward-based strategies in a MOOC. Computers & Education, 142, 103639. https://doi.org/10.1016/j.compedu.201.

    Article  Google Scholar 

  55. Pereira, J. (2016). Leveraging chatbots to improve self-guided learning through conversational quizzes. In F. J. García-Peñalvo (Ed), Proceedings of theFourth International Conference on Technological Ecosystems for Enhancing Multiculturality, (911–918). Association for Computing Machinery. https://doi.org/10.1145/3012430.3012625.

  56. Pereira, J., Fernández-Raga, M., Osuna-Acedo, S., Roura-Redondo, M., Almazán-López, O., & Buldón-Olalla, A. (2019). Promoting learners’ voice productions using Chatbots as a tool for improving the learning process in a MOOC (pp. 1–21). Knowledge and Learning: Technology. https://doi.org/10.1007/s10758-019-09414-9.

    Google Scholar 

  57. Pietquin, O., & Hastie, H. (2013). A survey on metrics for the evaluation of user simulations. The Knowledge Engineering Review, 28(1), 59–73. https://doi.org/10.1017/S0269888912000343.

    Article  Google Scholar 

  58. Potash, P., Romanov, A., Rumshisky, A. (2015). Ghostwriter: Using an lstm for automatic rap lyric generation. In L. Màrquez, C. Callison-Burch, & J. Su (Eds), Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 1919–1924. Association for Computational Linguistics. https://doi.org/10.18653/v1/d15-1221.

  59. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9. Retrieved 28 Dec 2019, from http://www.persagen.com/files/misc/radford2019language.pdf.

  60. Radziwill, N. M., & Benton, M. C. (2017). Evaluating quality of chatbots and intelligent conversational agents. ArXiv Preprint ArXiv, 1704, 04579.

    Google Scholar 

  61. Roitero, K., Bozzato, C., Mizzaro, V. D. M. S., Serra, G. (2020). Twitter goes to the Doctor: Detecting Medical Tweets using Machine Learning and BERT. In F. Couto & M. Krallinger (Eds), Proceedings of the Workshop on Semantic Indexing and Information Retrieval for Health from heterogeneous content types and languages co-located with 42nd European Conference on Information Retrieval: Vol. 2619. RWTH Aachen University. Retrieved 4 Dec 2019, from http://ceur-ws.org/Vol-2619/short1.pdf.

  62. Ruey, S. (2010). A case study of constructivist instructional strategies for adult online learning. British Journal of Educational Technology, 41(5), 706–720. https://doi.org/10.1111/j.1467-8535.2009.00965.x.

    Article  Google Scholar 

  63. Serban, I., Sordoni, A., Bengio, Y., Courville, A., & Pineau, J. (2016). Building end-to-end dialogue systems using generative hierarchical neural network models. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1), 3776–3783. Retrieved 2 Jan 2020, from https://dl.acm.org/doi/10.5555/3016387.3016435.

  64. Shah, D. (2019). Online degrees slowdown: A Review of MOOC Stats and Trends in 2019 — Class central. Class central Retrieved 4 Jan 2020, from https://www.classcentral.com/report/moocs-stats-and-trends-2019.

  65. Shawar, B. A., & Atwell, E. (2007a). Different measurements metrics to evaluate a chatbot system. Proceedings of the Workshop on Bridging the Gap: Academic and Industrial Research in Dialog Technologies, 89–96. https://doi.org/10.3115/1556328.1556341.

  66. Shawar, B. A., & Atwell, E. (2007b). Chatbots: Are they really useful? Journal for Language Technology and Computational Linguistics, 22(1), 29–49.

    Google Scholar 

  67. Shumaker, S. A., & Brownell, A. (1984). Toward a theory of social support: Closing conceptual gaps. Journal of Social Issues, 40(4), 11–36. https://doi.org/10.1111/j.1540-4560.1984.tb01105.x.

    Article  Google Scholar 

  68. Silverman, T. (1999). The internet and relational theory. American Psychologist, 54, 780–781. https://doi.org/10.1037/0003-066X.54.9.780.

    Article  Google Scholar 

  69. Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., et al. (2015). A neural network approach to context-sensitive generation of conversational responses. ArXiv Preprint ArXiv, 1506, 06714.

    Google Scholar 

  70. Sunar, A. S., White, S., Abdullah, N. A., & Davis, H. C. (2016). How learners’ interactions sustain engagement: A MOOC case study. IEEE Transactions on Learning Technologies, 10(4), 475–487. https://doi.org/10.1109/TLT.2016.2633268.

    Article  Google Scholar 

  71. Tagliamonte, S. A., & Denis, D. (2008). Linguistic ruin? LOL! Instant messaging and teen language. American speech, 83(1), 3–34.

    Article  Google Scholar 

  72. Tang, S., Peterson, J. C., Pardos, Z. A. (2016). Deep neural networks and how they apply to sequential education data. Proceedings of the Third ACM Conference on Learning@ Scale Conference, 321–324. https://doi.org/10.1145/2876034.2893444.

  73. Tegos, S., Psathas, G., Tsiatsos, T., Demetriadis, S. N. (2019). Designing Conversational Agent Interventions that Support Collaborative Chat Activities in MOOCs. In M. Calise, C. Kloos, C. Mongenet, J. Reich, J. Ruipérez-Valiente, G. Shimshon, T. Staubitz, & M. Wirsing (Eds), Proceedings of Proceedings of Work in Progress Papers of the Research, Experience and Business Tracks at EMOOCs 2019: Vol. 2356 (pp. 66-71). Retrieved 20 Dec 2019, from http://ceur-ws.org/Vol-2356/research_short11.pdf.

  74. Tomkin, J. H., & Charlevoix, D. (2014). Do professors matter?: Using an a/b test to evaluate the impact of instructor involvement on MOOC student outcomes. Proceedings of the First ACM Conference on Learning@ Scale Conference, 71–78. https://doi.org/10.1145/2556325.2566245.

  75. Tsai, H. S., Shillair, R., & Cotten, S. R. (2017). Social support and “playing around” an examination of how older adults acquire digital literacy with tablet computers. Journal of Applied Gerontology, 36(1), 29–55. https://doi.org/10.1177/0733464815609440.

    Article  Google Scholar 

  76. Vakulenko, S., de Rijke, M., Cochez, M., Savenkov, V., & Polleres, A. (2018). Measuring semantic coherence of a conversation. In International semantic web conference (pp. 634651). Cham: Springer.

  77. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds), Advances in Neural Information Processing Systems: Vol. 30 (pp. 5998–6008). Retrieved 27 Dec 2019, from https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

  78. Wang, X., Yang, D., Wen, M., Koedinger, K., Rosé, C. P. (2015). Investigating how Student’s cognitive behavior in MOOC discussion forums affect learning gains. In O. C. Santos, J. G. Boticario, C. Romero, M. Pechenizkiy, A. Merceron, P. Mitros, J. M. Luna, C. Mihaescu, P. Moreno, A. Hershkovitz, S. Ventura, & M. Desmarais (Eds), Proceedings of the 8th International Conference on Educational Data Mining (pp. 226–233). International Educational Data Mining Society. Retrieved 2 Jan 2020, from https://files.eric.ed.gov/fulltext/ED560568.pdf.

  79. Wang, W., Gan, Z., Wang, W., Shen, D., Huang, J., Ping, W., ... & Carin, L. (2018). Topic compositional neural language model. In A. Storkey & F. Perez-Cruz (Eds), Proceedings of Machine Learning Research: Vol. 84. International Conference on Artificial Intelligence and Statistics (pp. 356-365). Retrieved 23 Dec 2019, from http://proceedings.mlr.press/v84/wang18a/wang18a.pdf.

  80. Wen, M., Yang, D., Rose, C. (2014). Sentiment analysis in MOOC discussion forums: What does it tell us? In J. Stamper, Z. Pardos, M. Mavrikis, & B.M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (pp. 130-137). Retrieved 2 Jan 2020, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.660.5804&rep=rep1&type=pdf.

  81. Wen, T. H., Gašic, M., Mrkšic, N., Rojas-Barahona, L. M., Su, P. H., Vandyke, D., Young, S. (2015). Toward multi-domain language generation using recurrent neural networks. In K. Knight, A. Nenkova, & O. Rambow (Eds), Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 120-129). Association for Computational Linguistics. https://doi.org/10.18653/v1/N16-1015.

  82. Wills, T. A. (1991). Social support and interpersonal relationships. In M. S. Clark (Ed.), Review of personality and social psychology, Vol. 12. Prosocial behavior (pp. 265–289). Thousand Oaks: Sage Publications, Inc..

    Google Scholar 

  83. Wise, A. F., Cui, Y., Jin, W., & Vytasek, J. (2017). Mining for gold: Identifying content-related MOOC discussion threads across domains through linguistic modeling. The Internet and Higher Education, 32, 11–28. https://doi.org/10.1016/j.iheduc.2016.08.001.

    Article  Google Scholar 

  84. Wu, M., Xu, X., Kang, L., Zhao, J. L., & Liang, L. (2019). Encouraging people to embrace feedback-seeking in online learning: An investigation of informational and relational drivers. Internet Research, 29(4), 749–771. https://doi.org/10.1108/IntR-04-2017-0162.

    Article  Google Scholar 

  85. Xing, W. (2019). Exploring the influences of MOOC design features on student performance and persistence. Distance Education, 40(1), 98–113. https://doi.org/10.1080/01587919.2018.1553560.

    Article  Google Scholar 

  86. Xing, W., & Du, D. (2019). Dropout prediction in MOOCs: Using deep learning for personalized intervention. Journal of Educational Computing Research, 57(3), 547–570. https://doi.org/10.1177/0735633118757015.

    Article  Google Scholar 

  87. Xing, W., Chen, X., Stein, J., & Marcinkowski, M. (2016). Temporal predication of dropouts in MOOCs: Reaching the low hanging fruit through stacking generalization. Computers inhuman behavior, 58, 119–129. https://doi.org/10.1016/j.chb.2015.12.007.

    Article  Google Scholar 

  88. Xing, W., Goggins, S., & Introne, J. (2018). Quantifying the effect of informational support on membership retention in online communities through large-scale data analytics. Computers in Human Behavior, 86, 227–234. https://doi.org/10.1016/j.chb.2018.04.042.

    Article  Google Scholar 

  89. Xing, W., Tang, H., & Pei, B. (2019). Beyond positive and negative emotions: Looking into the role of achievement emotions in discussion forums of MOOCs. The Internet and Higher Education, 43, 100690.

    Article  Google Scholar 

  90. Xu, W., Napoles, C., Pavlick, E., Chen, Q., & Callison-Burch, C. (2016). Optimizing statistical machine translation for text simplification. Transactions of the Association for Computational Linguistics, 4, 401–415. https://doi.org/10.1162/tacl_a_00107.

    Article  Google Scholar 

  91. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized autoregressive Pretraining for language understanding. ArXiv Preprint ArXiv, 1906, 08237.

    Google Scholar 

  92. Zhang, Y., Sun, S., Galley, M., Chen, Y.-C., Brockett, C., Gao, X., … Dolan, B. (2020). DialoGPT: Large-scale generative pre-training for conversational response generation. In A. Celikyilmaz, T. Wen (Eds), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 270–278). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.acl-demos.30.

  93. Zumbrunn, S., McKim, C., Buhs, E., & Hawley, L. R. (2014). Support, belonging, motivation, and engagement in the college classroom: A mixed method study. Instructional Science, 42(5), 661–684. https://doi.org/10.1007/s11251-014-9310-0.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wanli Xing.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: AI4MOOCs: Artificial Intelligence, sensoring, modeling and assessment for MOOCs. A step beyond

Guest Editors: Filippo Sciarrone, Carla Limongelli, Olga C. Santos, and Marco Temperini

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xing, W. Natural Language Generation Using Deep Learning to Support MOOC Learners. Int J Artif Intell Educ (2021). https://doi.org/10.1007/s40593-020-00235-x

Download citation

Keywords

  • MOOCs
  • Natural language generation
  • Deep learning
  • Artificial intelligence
  • Discussion forums
  • Automatic support