Linking Dialogue with Student Modelling to Create an Adaptive Tutoring System for Conceptual Physics

Abstract

Jim Greer and his colleagues argued that student modelling is essential to provide adaptive instruction in tutoring systems and showed that effective modelling is possible, despite being enormously challenging. Student modelling plays a prominent role in many intelligent tutoring systems (ITSs) that address problem-solving domains. However, considerably less attention has been paid to using a student model to personalize instruction in tutorial dialogue systems (TDSs)—ITSs that engage students in natural-language, conceptual discussions. This paper describes Rimac, a TDS that tightly couples student modelling with tutorial dialogues about conceptual physics. Rimac is distinct from other TDSs insofar as it dynamically builds a persistent student model that guides reactive and proactive decision making in order to provide adaptive instruction. An initial pilot study set in high school physics classrooms compared a control version of Rimac without a student model with an experimental version that implemented a “poor man’s student model”; that is, the model was initialized using students’ pretest scores but not updated further. Both low and high prior knowledge students showed significant pretest to posttest learning gains. However, high prior knowledge students who used the experimental version of Rimac learned more efficiently than high prior knowledge students who used the control version. Specifically, high prior knowledge students who used the student model driven tutor took less time to complete the intervention but learned a similar amount as students who used the control version. A subsequent study found that both high and low prior knowledge students learned more efficiently from a version of the tutor that dynamically updates its student model during dialogues than from a control version that included the static “poor man’s student model.” We discuss future work needed to improve the performance of Rimac’s student model and to integrate TDSs in the classroom.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    See https://sites.google.com/site/rimacsite/ for a project overview and to download publications.

  2. 2.

    The dialogue in Table 1 was produced by one of the authors, to illustrate points discussed in this section. The tutor’s and student’s turns are shown verbatim, as they appear in the dialogue log.

  3. 3.

    “About” (British English) is roughly equivalent to “around” or “all over.”

  4. 4.

    The author of this maxim, which is translated from Latin, is Publilius Syrus (85–43 BC).

References

  1. Ai, H., & Litman, D. (2011). Assessing user simulation for dialog systems using human judges and automatic evaluation measures. Natural Language Engineering, 17(4), 511–540. https://doi.org/10.1017/S1351324910000318.

    Article  Google Scholar 

  2. Al-Shanfari, L., Epp, C. D., & Baber, C. (2017). Evaluating the effect of uncertainty visualisation in open learner models on students’ metacognitive skills. In E. André, R. S. Baker, H. Xiangen, M. M. T. Rodrigo, & B. du Boulay (Eds.), Proceedings of the 18th International Conference on Artificial Intelligence in Education, AIED 2017, Wuhan, China, June 28 - July 2 2017 (Vol. 10331, pp. 15-27, lecture notes in computer science). Cham: Springer. https://doi.org/10.1007/978-3-319-61425-0_2.

  3. Albacete, P., Jordan, P., & Katz, S. (2017a). Is a dialogue-based tutoring system that emulates helpful co-constructed relations during human tutoring effective? In C. Conati, N. Heffernan, A. Mitrovic, & M. Verdejo (Eds.), Proceedings of the 17th International Conference on Artificial Intelligence in Education, AIED 2015, Madrid, Spain, June 22-26 2015 (Vol. 9112, pp. 3-12, lecture notes in computer science). Cham: Springer. https://doi.org/10.1007/978-3-319-19773-9_1.

  4. Albacete, P., Jordan, P., Katz, S., Chounta, I. A., & McLaren, B. M. (2019). The impact of student model updates on contingent scaffolding in a natural-language tutoring system. In S. Isotani, E. Millán, A. Ogan, P. Hastings, B. M. McLaren, & R. Luckin (Eds.), Proceedings of the 20th International Conference on Artificial Intelligence in Education, AIED 2019, Chicago, Illinois, June 25–29 2019 (Vol. 11625, pp. 37–47, Lecture Notes in Computer Science). Cham: Springer. https://doi.org/10.1007/978-3-030-23204-7_4.

  5. Albacete, P., Jordan, P., Lusetich, D., Chounta, I. A., Katz, S., & McLaren, B. M. (2018). Providing proactive scaffolding during tutorial dialogue using guidance from student model predictions. In C. P. Rosé, R. Martínez-Maldonado, H. U. Hoppe, R. Luckin, M. Mavrikis, K. Porayska-Pomsta, et al. (Eds.), Proceedings of the 19th International Conference on Artificial Intelligence in Education, AIED 2018, London, UK, June 27–30 2018 (Vol. 10948, pp. 20–25, Lecture Notes in Computer Science). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-93846-2_4.

  6. Albacete, P., Silliman, S., & Jordan, P. (2017b). A tool to assess fine-grained knowledge from correct and incorrect answers in online multiple-choice tests: An application to student modeling. In J. Johnston (Ed.), Proceedings of the World Conference on Educational Media and Technology, EdMedia 2017, Washington, D.C., USA, June 21-23 2017 (pp. 988-996): Association for the Advancement of computing in education (AACE). https://www.learntechlib.org/primary/p/178413/. Accessed 25 Sept. 2020.

  7. Aleven, V., Koedinger, K. R., & Cross, K. (1999). Tutoring answer explanation fosters learning with understanding. In S. P. Lajoie & M. Vivet (Eds.), Proceedings of the 9th international conference on artificial intelligence in education, AIED 1999, Le Mans, France, July 19–23 1999 (pp. 199–206). Amsterdam: IOS Press.

    Google Scholar 

  8. Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (2016a). Instruction based on adaptive learning technologies. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of research on learning and instruction (2nd ed., pp. 522–560). New York: Routledge.

    Google Scholar 

  9. Aleven, V., Ogan, A., Popescu, O., Torrey, C., & Koedinger, K. R. (2004). Evaluating the effectiveness of a tutorial dialogue system for self-explanation. In J. C. Lester, R. M. Vicari, & F. Paraguaçu (Eds.), Proceedings of the 7th International Conference on Intelligent Tutoring Systems, ITS 2004, Maceió, Alagoas, Brazil, Aug. 30 - Sept. 3 2004 (Vol. 3220, pp. 443-454, lecture notes in computer science). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-30139-4_42.

  10. Aleven, V., Popescu, O., & Koedinger, K. R. (2001). Towards tutorial dialog to support self-explanation: Adding natural language understanding to a cognitive tutor. In J. D. Moore, C. L. Redfield, & W. L. Johnson (Eds.), Proceedings of the 10th International Conference on Artificial Intelligence in Education, AIED 2001, San Antonio, Texas, USA, May 19-23 2001 (pp. 246-255). Amsterdam: IOS press. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.9561.

  11. Aleven, V., Xhakaj, F., Holstein, K., & McLaren, B. M. (2016b). Developing a teacher dashboard for use with intelligent tutoring systems. In R. Vatrapu, M. Kickmeier-Rust, B. Ginon, & S. Bull (Eds.), Proceedings of the 4th International Workshop on Teaching Analytics in conjunction with EC-TEL 2016, Lyon, France, Sept. 13-16 2016 (Vol. 1738, pp. 15-23, CEUR Workshop Proceedings).

  12. Alkhatlan, A., & Kalita, J. (2018). Intelligent tutoring systems: A comprehensive historical survey with recent developments. International Journal of Computer Applications, 18(43), 1–20. https://doi.org/10.5120/ijca2019918451.

    Article  Google Scholar 

  13. Allen, L. K., Snow, E. L., & McNamara, D. S. (2015). Are you reading my mind? Modeling students' reading comprehension skills with natural language processing techniques. In P. Blikstein, A. Merceron, & G. Siemens (Eds.), Proceedings of the 5th International Conference on Learning Analytics and Knowledge, LAK ‘15, Poughkeepsie, New York, USA, 2015 (pp. 246-254). New York, NY, USA: Association for Computing Machinery. https://dl.acm.org/doi/10.1145/2723576.2723617.

  14. Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70(2), 181–214. https://doi.org/10.3102/00346543070002181.

    Article  Google Scholar 

  15. Belland, B. R. (2014). Scaffolding: Definition, current debates, and future directions. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (4th ed., pp. 505–518). New York: Springer.

    Google Scholar 

  16. Bimba, A. T., Idris, N. I., Al-Hunaiyyan, A., Mahmud, R. B., & Shuib, L. B. M. (2017). Adaptive feedback in computer-based learning environments: A review. Adaptive Behavior, 25(5), 217–234. https://doi.org/10.1177/1059712317727590.

    Article  Google Scholar 

  17. Blessing, S. B., Gilbert, S. B., Ourada, S., & Ritter, S. (2009). Authoring model-tracing cognitive tutors. International Journal of Artificial Intelligence in Education, 19(2), 189–210.

    Google Scholar 

  18. Brawner, K., & Graesser, A. C. (2014). Natural language, discourse, and conversational dialogues within intelligent tutoring systems: A review. In R. A. Sottilare, A. C. Graesser, X. Hu, & B. S. Goldberg (Eds.), Design Recommendations for Intelligent Tutoring Systems (Vol. 2, instructional management, pp. 189–204, adaptive tutoring series). Orlando, Florida: U.S. Army Research Laboratory.

  19. Britland, M. (2010). Accuracy of a learner’s edits to their learner model. Masters by Research thesis, University of Birmingham, Birmingham, UK.

  20. Brownfield, K. (2016). Scaffolding in literacy learning and teaching: The impact of teacher responsiveness during writing on first grade students’ literacy learning. PhD dissertation: The Ohio State University, Columbus, Ohio, USA.

    Google Scholar 

  21. Brownfield, K., & Wilkinson, I. A. G. (2018). Examining the impact of scaffolding on literacy learning: A critical examination of research and guidelines to advance inquiry. International Journal of Educational Research, 90, 177–190. https://doi.org/10.1016/j.ijer.2018.01.004.

    Article  Google Scholar 

  22. Brusilovsky, P., Somyürek, S., Guerra, J., Hosseini, R., & Zadorozhny, V. (2015). The value of social: Comparing open student modeling and open social student modeling. In F. Ricci, K. Bontcheva, O. Conlan, & S. lawless (Eds.), Proceedings of the 23rd International Conference on User Modeling, Adaptation, and Personalization, UMAP 2015, Dublin, Ireland, June 29 - July 3 2015 (Vol. 9146, pp. 44-55, lecture notes in computer science). Cham: Springer. https://doi.org/10.1007/978-3-319-20267-9_4.

  23. Bull, S. (2016). Negotiated learner modelling to maintain today’s learner models. Research and Practice in Technology Enhanced Learning, 11(1), 10. https://doi.org/10.1186/s41039-016-0035-3.

    Article  Google Scholar 

  24. Bull, S. (2020). There are open learner models about! IEEE Transactions on Learning Technologies, 13(2), 425–448. https://doi.org/10.1109/TLT.2020.2978473.

    Article  Google Scholar 

  25. Bull, S., Johnson, M. D., Alotaibi, M., Byrne, W., & Cierniak, G. (2013). Visualising multiple data sources in an independent open learner model. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Proceedings of the 16th International Conference on Artificial Intelligence in Education, AIED 2013, Memphis, TN, USA, July 9-13 2013 (Vol. 7926, pp. 199-208, lecture notes in artificial intelligence). Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-642-39112-5_21.

  26. Bull, S., Johnson, M. D., Masci, D., & Biel, C. (2015). Integrating and visualising diagnostic information for the benefit of learning. In P. Reimann, S. Bull, M. Kickmeier-Rust, R. Vatrapu, & B. Wasson (Eds.), Measuring and visualizing learning in the information-rich classroom (pp. 167–171). New York: Routledge.

    Google Scholar 

  27. Bull, S., & Kay, J. (2007). Student models that invite the learner in: The SMILI☺ open learner modelling framework. International Journal of Artificial Intelligence in Education, 17(2), 89–120.

    Google Scholar 

  28. Bull, S., & Kay, J. (2013). Open learner models as drivers for metacognitive processes. In R. Azevedo, & V. Aleven (Eds.), International Handbook of Metacognition and Learning Technologies (Vol. 28, pp. 349-365, springer international handbooks of education). New York, NY, USA: Springer.

  29. Bull, S., & Kay, J. (2016). SMILI☺: A framework for interfaces to learning data in open learner models, learning analytics and related fields. International Journal of Artificial Intelligence in Education, 26(1), 293–331. https://doi.org/10.1007/s40593-015-0090-8.

    Article  Google Scholar 

  30. Bull, S., & Mabbott, A. (2006). 20000 inspections of a domain-independent open learner model with individual and comparison views. In M. Ikeda, K. D. Ashley, & T. Chan (Eds.), Proceedings of the 8th International Conference on Intelligent Tutoring Systems, ITS 2006, Jhongli, Taiwan, June 26-30 2006 (Vol. 4053, pp. 422-432, lecture notes in computer science). Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/11774303_42.

  31. Bull, S., & McKay, M. (2004). An open learner model for children and teachers: Inspecting knowledge level of individuals and peers. In J. C. Lester, R. M. Vicari, & F. Paraguaçu (Eds.), Proceedings of the 7th International Conference on Intelligent Tutoring Systems, ITS 2004, Maceió, Alagoas, Brazil, August 30 - September 3 2004 (Vol. 3220, pp. 646-655, lecture notes in computer science). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-30139-4_61.

  32. Bull, S., & Pain, H. (1995). "did I say what I think I said, and do you agree with me?": Inspecting and questioning the student model. In Proceedings of the 7th World Conference on Artificial Intelligence in Education, AIED 1995, Washington, DC, USA, Aug. 16-19 1995 (pp. 501-508): Association for the Advancement of computing in education.

  33. Bull, S., & Wasson, B. (2016). Competence visualisation: Making sense of data from 21st-century technologies in language learning. ReCALL: The Journal of EUROCALL, 28(2), 147–165. https://doi.org/10.1017/S0958344015000282.

    Article  Google Scholar 

  34. Chang, K.-M., Beck, J., Mostow, J., & Corbett, A. (2006). A Bayes net toolkit for student modeling in intelligent tutoring systems. In M. Ikeda, K. D. Ashley, & T. Chan (Eds.), Proceedings of the 8th International Conference on Intelligent Tutoring Systems, ITS 2006, Jhongli, Taiwan, June 26-30 2006 (Vol. 4053, pp. 104-113, lecture notes in computer science). Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/11774303_11.

  35. Chen, Z.-H., & Chan, T.-W. (2008). Learning by substitutive competition: Nurturing my-pet for game competition based on open learner model. In Proceedings of the 2nd IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, DIGITEL ‘08, Banff, BC, Canada, Nov. 17-19 2008 (pp. 124-131): IEEE. doi: https://doi.org/10.1109/DIGITEL.2008.36.

  36. Chi, M., Jordan, P., & VanLehn, K. (2014). When is tutorial dialogue more effective than step-based tutoring? In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS 2014, Dresden, Germany, Nov. 16-19 2014 (Vol. 8474, pp. 210-219, lecture notes in computer science). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-07221-0_25.

  37. Chi, M., Koedinger, K. R., Gordon, G. J., Jordan, P., & VanLehn, K. (2011). Instructional Factors Analysis: A cognitive model for multiple instructional interventions. In M. Pechenizkiy, T. Calders, C. Conati, S. Ventura, C. Romero, & J. Stamper (Eds.), Proceedings of the 4th International Conference on Educational Data Mining, EDM 2011, Eindhoven, Netherlands, July 6–8 2011 (pp. 61–70). http://educationaldatamining.org/EDM2011/wp-content/uploads/proc/edm11_proceedings.pdf. Accessed 25 Sept. 2020.

  38. Chounta, I. A., Albacete, P., Jordan, P., Katz, S., & McLaren, B. M. (2017a). The “Grey area”: A computational approach to model the zone of proximal development. In É. Lavoué, H. Drachsler, K. Verbert, J. Broisin, & M. Pérez-Sanagustín (Eds.), Proceedings of the 12th European Conference on Technology Enhanced Learning, EC-TEL 2017, Tallinn, Estonia, Sept. 12-15 2017 (Vol. 10474, pp. 3-16, lecture notes in computer science). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-66610-5_1.

  39. Chounta, I. A., Albacete, P., Jordan, P., Katz, S., & McLaren, B. M. (2017b). Modeling the zone of proximal development with a computational approach. In X. Hu, T. Barnes, A. Hershkovitz, & L. Paquette (Eds.), Proceedings of the 10th International Conference on Educational Data Mining, EDM 2017, Wuhan, China, June 25-28 2017 (pp. 56-57).

  40. Chounta, I. A., & Carvalho, P. F. (2019). Square it up!: How to model step duration when predicting student performance. In Proceedings of the 9th international conference on Learning Analytics & Knowledge, LAK ‘19, Tempe, Arizona, USA, march 4–8 2019 (pp. 330–334). New York: Association for Computing Machinery. https://doi.org/10.1145/3303772.3303827.

    Google Scholar 

  41. Conati, C., & Kardan, S. (2013). Student modeling: Supporting personalized instruction, from problem solving to exploratory open-ended activities. AI Magazine, 34(3), 13–26. https://doi.org/10.1609/aimag.v34i3.2483.

    Article  Google Scholar 

  42. Cooper, G., & Sweller, J. (1987). Effects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 79(4), 347–362. https://doi.org/10.1037/0022-0663.79.4.347.

    Article  Google Scholar 

  43. d. Baker, R. S. J., D'Mello, S. K., Rodrigo, M. M. T., & Graesser, A. C. (2010). Better to be frustrated than bored: The incidence, persistence, and impact of learners’ cognitive–affective states during interactions with three different computer-based learning environments. International Journal of Human-Computer Studies, 68(4), 223–241. https://doi.org/10.1016/j.ijhcs.2009.12.003.

  44. Desmarais, M. C., & d. Baker, R. S. J. (2012). A review of recent advances in learner and skill modeling in intelligent learning environments. User Modeling and User-Adapted Interaction, 22(1–2), 9–38. https://doi.org/10.1007/s11257-011-9106-8.

    Article  Google Scholar 

  45. Dimitrova, V. (2003). STyLE-OLM: Interactive open learner modelling. International Journal of Artificial Intelligence in Education, 13(1), 35–78.

    Google Scholar 

  46. Dimitrova, V., & Brna, P. (2016). From interactive open learner modelling to intelligent mentoring: STyLE-OLM and beyond. International Journal of Artificial Intelligence in Education, 26(1), 332–349. https://doi.org/10.1007/s40593-015-0087-3.

    Article  Google Scholar 

  47. Dimitrova, V., Self, J., & Brna, P. (2001). Applying interactive open learner models to learning technical terminology. In M. Bauer, P. J. Gmytrasiewicz, & J. Vassileva (Eds.), Proceedings of the 8th International Conference on User Modeling, UM 2001, Sonthofen, Germany, July 13-17 2001 (Vol. 2109, pp. 148-157, lecture notes in computer science). Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/3-540-44566-8_15.

  48. Doroudi, S., & Brunskill, E. (2019). Fairer but not fair enough: On the equitability of knowledge tracing. In J. Cunningham, N. Hoover, S. Hsiao, G. Lynch, K. McCarthy, C. Brooks, et al. (Eds.), Proceedings of the 9th international conference on Learning Analytics & Knowledge, LAK ‘19, Tempe, Arizona, USA, march 4–8 2019 (pp. 335–339). New York: Association for Computing Machinery. https://doi.org/10.1145/3303772.3303838.

    Google Scholar 

  49. Duan, D., Mitrovic, A., & Churcher, N. (2010). Evaluating the effectiveness of multiple open student models in EER-tutor. In S. L. Wong (Ed.), Proceedings of the 18th International Conference on Computers in Education, ICCE 2010, Putrajaya, Malaysia, Nov. 29 - Dec. 3 2010 (pp. 86-88). http://hdl.handle.net/10092/5052. Accessed 25 Sept. 2020.

  50. Dzikovska, M., Moore, J. D., Steinhauser, N., & Campbell, G. (2010). The impact of interpretation problems on tutorial dialogue. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL 2010, Short Papers, Uppsala, Sweden, July 11-16 2010 (pp. 43-48): Association for Computational Linguistics. Doi:https://dl.acm.org/doi/10.5555/1858842.1858851.

  51. Dzikovska, M., Steinhauser, N., Farrow, E., Moore, J., & Campbell, G. (2014). BEETLE II: Deep natural language understanding and automatic feedback generation for intelligent tutoring in basic electricity and electronics. International Journal of Artificial Intelligence in Education, 24(3), 284–332. https://doi.org/10.1007/s40593-014-0017-9.

    Article  Google Scholar 

  52. Epp, C. D., & Bull, S. (2015). Uncertainty representation in visualizations of learning analytics for learners: Current approaches and opportunities. IEEE Transactions on Learning Technologies, 8(3), 242–260. https://doi.org/10.1109/TLT.2015.2411604.

    Article  Google Scholar 

  53. Epp, C. D., Perez, R., Phirangee, K., Hewitt, J., & Toope, K. (2019). User-centered dashboard design: Iterative design to support teacher informational needs in online learning contexts. Paper presented at the American Educational Research Association (AERA) annual meeting, Toronto, Canada, April 5-9.

  54. Evens, M., & Michael, J. (2006). One-on-one tutoring by humans and computers. Mahwah: Lawrence Erlbaum Associates, Inc..

    Google Scholar 

  55. Ferreira, H. N. M., Araújo, R. D., Dorça, F. A., & Cattelan, R. G. (2017). Open student modeling for academic performance visualization in ubiquitous learning environments. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, SMC 2017, Banff, Canada, Oct. 5-8 2017 (pp. 641-646): IEEE. doi:https://doi.org/10.1109/SMC.2017.8122679.

  56. Forbes-Riley, K., & Litman, D. (2011). Designing and evaluating a wizarded uncertainty-adaptive spoken dialogue tutoring system. Computer Speech & Language, 25(1), 105–126. https://doi.org/10.1016/j.csl.2009.12.002.

    Article  Google Scholar 

  57. Fox, B. A. (1991). Cognitive and interactional aspects of correction in tutoring. In P. Goodyear (Ed.), Teaching Knowledge and Intelligent Tutoring (pp. 149–172): Ablex publishing.

  58. Gavelek, J. R., & Raphael, T. E. (1985). Metacognition, instruction, and the role of questioning activities. In D. L. Forrest-Pressley, G. E. MacKinnon, & T. G. Waller (Eds.), Metacognition, Cognition, and Human Performance (Vol. 2, pp. 103-136, instructional practices). Orlando, FL, USA: Academic press, Inc.

  59. Ginon, B., Boscolo, C., Johnson, M. D., & Bull, S. (2016). Persuading an open learner model in the context of a university course: An exploratory study. In A. Micarelli, J. stamper, & K. Panourgia (Eds.), Proceedings of the 13th International Conference on Intelligent Tutoring Systems, ITS 2016, Zagreb, Croatia, June 6-10 2016 (Vol. 9684, pp. 307-313, lecture notes in computer science). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-39583-8_34.

  60. Girard, S. (2011). Traffic lights and smiley faces: Do children learn mathematics better with affective open-learner Modelling tutors? PhD Dissertation, University of Bath, Bath, UK.

  61. Girard, S., & Johnson, H. (2008). DividingQuest: Opening the learner model to teachers. Computer Science Technical Report Series (Vol. CSBU-2008-01). Bath, U. K.: University of Bath.

  62. Gong, Y. (2014). Student Modeling in Intelligent Tutoring Systems. PhD Dissertation, Worcester Polytechnic Institute, Worcester, MA, USA.

  63. Graesser, A. C. (2016). Conversations with AutoTutor help students learn. International Journal of Artificial Intelligence in Education, 26(1), 124–132. https://doi.org/10.1007/s40593-015-0086-4.

    Article  Google Scholar 

  64. Graesser, A. C., Cai, Z., Morgan, B., & Wang, L. (2017a). Assessment with computer agents that engage in conversational dialogues and trialogues with learners. Computers in Human Behavior, 76, 607–616. https://doi.org/10.1016/j.chb.2017.03.041.

    Article  Google Scholar 

  65. Graesser, A. C., D’Mello, S. K., & Strain, A. C. (2014). Emotions in advanced learning technologies. In R. Pekrun, & L. Linnenbrink-Garcia (Eds.), International Handbook of Emotions in Education (pp. 473-493, Educational Psychology handbook series). New York, NY, USA: Routledge/Taylor & Francis Group.

  66. Graesser, A. C., Jackson, G. T., Matthews, E. C., Mitchell, H. H., Olney, A., Ventura, M., et al. (2003). Why/AutoTutor: A test of learning gains from a physics tutor with natural language dialog. In R. Alterman, & D. Kirsh (Eds.), Proceedings of the 25th Annual Meeting of the Cognitive Science Society, Boston, MA, USA, July 31 - Aug. 2 2003 (Vol. 25): Cognitive Science Society. https://www.academia.edu/33989380/Why_AutoTutor_A_test_of_learning_gains_from_a_physics_tutor_with_natural_language_dialog. Accessed 25 Sept. 2020.

  67. Graesser, A. C., Lippert, A. M., & Hampton, A. J. (2017b). Successes and failures in building learning environments to promote deep learning: The value of conversational agents. In J. Buder & F. Hesse (Eds.), Informational environments (pp. 273–298). Cham: Springer.

    Google Scholar 

  68. Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A., & Louwerse, M. M. (2004). AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods, Instruments, & Computers, 36(2), 180–192. https://doi.org/10.3758/BF03195563.

    Article  Google Scholar 

  69. Graesser, A. C., & Person, N. K. (1994). Question asking during tutoring. American Educational Research Journal, 31(1), 104–137. https://doi.org/10.3102/00028312031001104.

    Article  Google Scholar 

  70. Greer, J. E., & McCalla, G. I. (1993). Student modelling: The key to individualized knowledge-based instruction. In J. E. Greer, & G. I. McCalla (Eds.), Proceedings of the NATO Advanced Research Workshop on “Student Modelling: The Key to Individualized Knowledge-Based Instruction”, Ste. Adele, Quebec, Canada, May 4-8 1994 (Vol. 125). Berlin, Heidelberg: Springer-Verlag. Doi:https://link.springer.com/book/10.1007/978-3-662-03037-0.

  71. Grigoriadou, M., Papanikolaou, K., Tsaganou, G., Gouli, E., & Gogoulou, A. (2010). Introducing innovative e-learning environments in higher education. International Journal of Continuing Engineering Education and Life-Long Learning, 20(3–5), 337–355. https://doi.org/10.1504/IJCEELL.2010.037050.

    Article  Google Scholar 

  72. Gunasekara, R. C., Nahamoo, D., Polymenakos, L. C., Ciaurri, D. E., Ganhotra, J., & Fadnis, K. P. (2019). Quantized dialog—A general approach for conversational systems. Computer Speech & Language, 54, 17–30. https://doi.org/10.1016/j.csl.2018.06.003.

    Article  Google Scholar 

  73. Halloun, I. A., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043–1055. https://doi.org/10.1119/1.14030.

    Article  Google Scholar 

  74. Holstein, K., Hong, G., Tegene, M., McLaren, B. M., & Aleven, V. (2018a). The classroom as a dashboard: Co-designing wearable cognitive augmentation for K-12 teachers. In S. B. Shum, R. Ferguson, A. M. Merceron, & X. Ochoa (Eds.), Proceedings of the 8th international conference on learning analytics and knowledge, LAK ‘18, Sydney, New South Wales, Australia, march 3–9 2018 (pp. 79–88). New York: Association for Computing Machinery. https://doi.org/10.1145/3170358.3170377.

    Google Scholar 

  75. Holstein, K., McLaren, B. M., & Aleven, V. (2017a). Intelligent tutors as teachers' aides: Exploring teacher needs for real-time analytics in blended classrooms. In X. Ochoa, I. Molenaar, & S. Dawson (Eds.), Proceedings of the 7th International Learning Analytics & Knowledge Conference, LAK ‘17, Vancouver, British Columbia, Canada, march 13–17 2017 (pp. 257–266). New York: Association for Computing Machinery. https://doi.org/10.1145/3027385.3027451.

    Google Scholar 

  76. Holstein, K., McLaren, B. M., & Aleven, V. (2017b). SPACLE: Investigating learning across virtual and physical spaces using spatial replays. In X. Ochoa, I. Molenaar, & S. Dawson (Eds.), Proceedings of the 7th International Learning Analytics & Knowledge Conference, LAK ‘17, Vancouver, British Columbia, Canada, march 3–9 2017 (pp. 358–367). New York: Association for Computing Machinery. https://doi.org/10.1145/3027385.3027450.

    Google Scholar 

  77. Holstein, K., McLaren, B. M., & Aleven, V. (2018b). Informing the design of teacher awareness tools through causal alignment analysis. In J. Kay, & R. Luckin (Eds.), Proceedings of the 13th International Conference of the Learning Sciences, ICLS ‘18, London, UK, June 23-27 2018 (Vol. 1, pp. 104-111): International Society of the Learning Sciences, Inc. http://kenholstein.com/ICLS18_CAA.pdf. Accessed 25 Sept. 2020.

  78. Holstein, K., McLaren, B. M., & Aleven, V. (2018c). Student learning benefits of a mixed-reality teacher awareness tool in AI-enhanced classrooms. In C. P. Rosé, R. Martínez-Maldonado, H. U. Hoppe, R. Luckin, M. Mavrikis, K. Porayska-Pomsta, et al. (Eds.), Proceedings of the 19th International Conference on Artificial Intelligence in Education, AIED 2018, London, UK, June 27-30 2018 (Vol. 10947, pp. 154-168, lecture notes in computer science). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-93843-1.

  79. Holstein, K., McLaren, B. M., & Aleven, V. (2019). Co-designing a real-time classroom orchestration tool to support teacher–AI complementarity. Journal of Learning Analytics, 6(2), 27–52, doi: https://doi.org/10.18608/jla.2019.62.3.

  80. Holstein, K., Xhakaj, F., Aleven, V., & McLaren, B. M. (2010). Luna: A dashboard for teachers using intelligent tutoring systems. Education, 60(1), 159–171.

    Google Scholar 

  81. Hothorn, T., & Everitt, B. S. (2014). A handbook of statistical analyses using R (3rd ed.). Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  82. Hsiao, I.-H., & Brusilovsky, P. (2017). Guiding and motivating students through open social student modeling: Lessons learned. Teachers College Record, 119(3).

  83. Hume, G., Michael, J., Rovick, A., & Evens, M. (1996). Hinting as a tactic in one-on-one tutoring. The Journal of the Learning Sciences, 5(1), 23–47. https://doi.org/10.1207/s15327809jls0501_2.

    Article  Google Scholar 

  84. Jackson, G. T., Dempsey, K. B., & McNamara, D. S. (2012). Game-based practice in a reading strategy tutoring system: Showdown in iSTART-ME. In H. Reinders (Ed.), Digital Games in Language Learning and Teaching (pp. 115-138, the new language learning and teaching environments (NLLTE) series). London: Palgrave Macmillan.

  85. Jordan, P., Albacete, P., & Katz, S. (2015a). Exploring the effects of redundancy within a tutorial dialogue system: Restating students’ responses. In A. Koller, G. Skantze, F. Jurcicek, M. Araki, & C. P. Rosé (Eds.), Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue, Prague, Czech Republic, Sept. 2-4 2015. Stroudsburg, PA, USA: Association for Computational Linguistics. Doi:https://doi.org/10.18653/v1/W15-46.

  86. Jordan, P., Albacete, P., & Katz, S. (2015b). When is it helpful to restate student responses within a tutorial dialogue system? In C. Conati, N. Heffernan, A. Mitrovic, & M. Verdejo (Eds.), Proceedings of the 17th International Conference on Artificial Intelligence in Education, AIED 2015, Madrid, Spain, June 22-26 2015 (Vol. 9112, pp. 658-661, lecture notes in computer science). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-19773-9_85.

  87. Jordan, P., Albacete, P., & Katz, S. (2016). Exploring contingent step decomposition in a tutorial dialogue system. In L. Aroyo, & S. D’Mello (Eds.), Extended Proceedings of the 24th Conference on User Modeling, Adaptation and Personalization (UMAP 2016): Late Breaking Results, Halifax, Nova Scotia, Canada, July 13-17 2016. New York, NY, USA: Association for Computing Machinery. Doi:https://dl.acm.org/doi/proceedings/10.1145/2930238.

  88. Jordan, P., Albacete, P., & Katz, S. (2017). Adapting step granularity in tutorial dialogue based on pretest scores. In E. André, R. S. J. d. Baker, X. Hu, M. Rodrigo, & B. du Boulay (Eds.), Proceedings of the 18th International Conference on Artificial Intelligence in Education, AIED 2017, Wuhan, China, June 28 - July 1 2017 (Vol. 10331, pp. 137-148, lecture notes in computer science). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-61425-0_12.

  89. Jordan, P., Albacete, P., & Katz, S. (2018). A comparison of tutoring strategies for recovering from a failed attempt during faded support. In C. P. Rosé, R. Martínez-Maldonado, H. U. Hoppe, R. Luckin, M. Mavrikis, K. Porayska-Pomsta, et al. (Eds.), Proceedings of the 19th International Conference on Artificial Intelligence in Education, AIED 2018, London, UK, July 27-30 2018 (Vol. 10947, pp. 212-224, lecture notes in computer science). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-93843-1_16.

  90. Jordan, P., Katz, S., Albacete, P., Ford, M., & Wilson, C. (2012). Reformulating student contributions in tutorial dialogue. In B. Di Eugenio, & S. McRoy (Eds.), Proceedings of the 7th international natural language generation conference, INLG 2012, Utica, IL, USA, may 30–June 1 2012 (pp. 95–99). Stroudsburg, PA, USA: Association for Computational Linguistics. https://www.aclweb.org/anthology/W12-1500. Accessed 25 Sept. 2020.

  91. Jordan, P., Ringenberg, M., & Hall, B. (2006). Rapidly developing dialogue systems that support learning studies. In Proceedings of the ITS 2006 Workshop on teaching with robots, Agents, and NLP, Jhongli, Taiwan, June 26-30 2006 (pp. 1-8). https://www.learnlab.org/uploads/mypslc/publications/overview.pdf. Accessed 25 Sept. 2020.

  92. Katz, S., & Albacete, P. (2013). A tutoring system that simulates the highly interactive nature of human tutoring. Journal of Educational Psychology, 105(4), 1126–1141, doi:https://doi.apa.org/doiLanding?doi=10.1037%2Fa0032063.

  93. Katz, S., Albacete, P., & Jordan, P. (2016). Do summaries support learning from post-problem reflective dialogues? In A. Micarelli, J. C. stamper, & K. Panourgia (Eds.), Proceedings of the 13th International Conference on Intelligent Tutoring Systems, ITS 2016, Zagreb, Croatia, June 7-10 2016 (Vol. 9684, pp. 519-520, lecture notes in computer science). Berlin, Heidelberg: Springer-Verlag. Doi:https://dl.acm.org/doi/proceedings/10.5555/2959507.

  94. Katz, S., Albacete, P., Jordan, P., Lusetich, D., Chounta, I. A., & McLaren, B. M. (2018). Operationalizing contingent tutoring in a natural-language dialogue system. In S. Craig (Ed.), Tutoring and intelligent tutoring systems (pp. 187–220). New York: Nova Science Publishers.

    Google Scholar 

  95. Kerly, A., & Bull, S. (2008). Children’s interactions with inspectable and negotiated learner models. In B. P. Woolf, E. Aïmeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems, ITS 2008, Montreal, QC, Canada, June 23-27 2008 (Vol. 5091, pp. 132-141, lecture notes in computer science). Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-540-69132-7_18.

  96. Kerly, A., Ellis, R., & Bull, S. (2008). CALMsystem: A conversational agent for learner modelling. Knowledge-Based Systems, 21(3), 238–246. https://doi.org/10.1016/j.knosys.2007.11.015.

    Article  Google Scholar 

  97. Kerly, A., Hall, P., & Bull, S. (2007). Bringing chatbots into education: Towards natural language negotiation of open learner models. Knowledge-Based Systems, 20(2), 177–185. https://doi.org/10.1016/j.knosys.2006.11.014.

    Article  Google Scholar 

  98. King, A. (1990). Enhancing peer interaction and learning in the classroom through reciprocal questioning. American Educational Research Journal, 27(4), 664–687. https://doi.org/10.3102/00028312027004664.

    Article  Google Scholar 

  99. King, A. (1994). Guiding knowledge construction in the classroom: Effects of teaching children how to question and how to explain. American Educational Research Journal, 31(2), 338–368. https://doi.org/10.3102/00028312031002338.

    Article  Google Scholar 

  100. Koedinger, K. R., & Corbett, A. (2006). Cognitive tutors: Technology bringing learning sciences to the classroom. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (Cambridge handbooks in psychology): Cambridge University press.

  101. Kopp, K. J., Britt, M. A., Millis, K., & Graesser, A. C. (2012). Improving the efficiency of dialogue in tutoring. Learning and Instruction, 22(5), 320–330. https://doi.org/10.1016/j.learninstruc.2011.12.002.

    Article  Google Scholar 

  102. Lane, H. C., & VanLehn, K. (2005). Teaching the tacit knowledge of programming to novices with natural language tutoring. Computer Science Education, 15(3), 183–201. https://doi.org/10.1080/08993400500224286.

    Article  Google Scholar 

  103. Litman, D., & Forbes-Riley, K. (2006). Correlations between dialogue acts and learning in spoken tutoring dialogues. Natural Language Engineering, 12(2), 161–176. https://doi.org/10.1017/S1351324906004165.

    Article  Google Scholar 

  104. Long, Y., & Aleven, V. (2017). Enhancing learning outcomes through self-regulated learning support with an open learner model. User Modeling and User-Adapted Interaction, 27(1), 55–88. https://doi.org/10.1007/s11257-016-9186-6.

    Article  Google Scholar 

  105. MacLellan, C. J., Liu, R., & Koedinger, K. R. (2015). Accounting for slipping and other false negatives in logistic models of student learning. In O. C. Santos, J. G. Boticario, C. Romero, M. Pechenizkiy, A. Merceron, P. Mitros, et al. (Eds.), Proceedings of the 8th International Educational Data Mining Society Conference, EDM 2015, Madrid, Spain, June 26–29 2015 (pp. 53–60): International Educational Data Mining Society (IEDMS). https://files.eric.ed.gov/fulltext/ED560503.pdf. Accessed 25 Sept. 2020.

  106. McCarthy, K. S., Watanabe, M., Dai, J., & McNamara, D. S. (2020). Personalized learning in iSTART: Past modifications and future design. Journal of Research on Technology in Education, 52(3), 301–321. https://doi.org/10.1080/15391523.2020.1716201.

    Article  Google Scholar 

  107. McLaren, B. M., van Gog, T., Ganoe, C., Karabinos, M., & Yaron, D. (2016). The efficiency of worked examples compared to erroneous examples, tutored problem solving, and problem solving in computer-based learning environments. Computers in Human Behavior, 55(part A), 87-99, doi: https://doi.org/10.1016/j.chb.2015.08.038.

  108. McNamara, D. S., O’Reilly, T., Rowe, M., Boonthum, C., & Levinstein, I. B. (2007). iSTART: A web-based tutor that teaches self-explanation and metacognitive reading strategies. In D. S. McNamara (Ed.), Reading comprehension strategies: Theories, interventions, and technologies (pp. 397–420). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  109. Mestre, J. P., Ross, B. H., Brookes, D. T., Smith, A. D., & Nokes, T. J. (2009). How cognitive science can promote conceptual understanding in physics classrooms. In I. M. Saleh, & M. S. Khine (Eds.), Fostering Scientific Habits of Mind: Pedagogical Knowledge and Best Practices in Science Education (Vol. 3, pp. 145-171, contemporary approaches to research in learning innovations series). Rotterdam, the Netherlands: Sense publishers.

  110. Mitrovic, A. (2012). Fifteen years of constraint-based tutors: What we have achieved and where we are going. User Modeling and User-Adapted Interaction, 22(1–2), 39–72. https://doi.org/10.1007/s11257-011-9105-9.

    Article  Google Scholar 

  111. Olney, A., D’Mello, S., Person, N., Cade, W., Hays, P., Williams, C., et al. (2012). Guru: A computer tutor that models expert human tutors. In S. A. Cerri, W. J. Clancey, G. Papadourakis, & K. Panourgia (Eds.), Proceedings of the 11th International Conference on Intelligent Tutoring Systems, ITS 2012, Chania, Crete, Greece, June 14-18 2012 (Vol. 7315, pp. 256-261, lecture notes in computer science). Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-642-30950-2_32.

  112. Olney, A., Louwerse, M., Matthews, E., Marineau, J., Hite-Mitchell, H., & Graesser, A. C. (2003). Utterance classification in AutoTutor. In Proceedings of the HLT-NAACL 03 Workshop on Building Educational Applications Using Natural Language Processing, 2003 (Vol. 2, pp. 1-8). Stroudsburgh, PA, USA: Association for Computational Linguistics. doi: https://doi.org/10.3115/1118894.1118895.

  113. Paladines, J., & Ramírez, J. (2020). A systematic literature review of intelligent tutoring systems with dialogue in natural language. IEEE Access(8),164246-164267. https://doi.org/10.1109/ACCESS.2020.3021383.

  114. Palincsar, A. S. (1998). Keeping the metaphor of scaffolding fresh—A response to C. Addison Stone's “the metaphor of scaffolding: Its utility for the field of learning disabilities”. Journal of Learning Disabilities, 31(4), 370–373. https://doi.org/10.1177/002221949803100406.

    Article  Google Scholar 

  115. Pavlik, P. I., Brawner, K., Olney, A., & Mitrovic, A. (2013). A review of student models used in intelligent tutoring systems. In R. A. Sottilare, A. C. Graesser, X. Hu, & H. Holden (Eds.), Design recommendations for intelligent tutoring systems: Volume 1—Learner modeling (pp. 39–68). Orlando: US Army Research Laboratory.

    Google Scholar 

  116. Pérez-Marín, D., & Pascual-Nieto, I. (2010). Showing automatically generated students' conceptual models to students and teachers. International Journal of Artificial Intelligence in Education, 20(1), 47–72. https://doi.org/10.3233/JAI-2010-0002.

    Article  Google Scholar 

  117. Pino-Pasternak, D., Whitebread, D., & Tolmie, A. (2010). A multidimensional analysis of parent–child interactions during academic tasks and their relationships with children's self-regulated learning. Cognition and Instruction, 28(3), 219–272. https://doi.org/10.1080/07370008.2010.490494.

    Article  Google Scholar 

  118. Pratt, M. W., Green, D., MacVicar, J., & Bountrogianni, M. (1992). The mathematical parent: Parental scaffolding, parenting style, and learning outcomes in long-division mathematics homework. Journal of Applied Developmental Psychology, 13(1), 17–34. https://doi.org/10.1016/0193-3973(92)90003-Z.

    Article  Google Scholar 

  119. Pratt, M. W., Kerig, P., Cowan, P. A., & Cowan, C. P. (1988). Mothers and fathers teaching 3-year-olds: Authoritative parenting and adult scaffolding of young children's learning. Developmental Psychology, 24(6), 832–839. https://doi.org/10.1037/0012-1649.24.6.832.

    Article  Google Scholar 

  120. Pratt, M. W., & Savoy-Levine, K. M. (1998). Contingent tutoring of long-division skills in fourth and fifth graders: Experimental tests of some hypotheses about scaffolding. Journal of Applied Developmental Psychology, 19(2), 287–304. https://doi.org/10.1016/S0193-3973(99)80041-0.

    Article  Google Scholar 

  121. Reber, A., Rhiannon, A., & Reber, E. (2009). Penguin Dictionary of Psychology (4th ed., Penguin Reference Library): Penguin Press.

  122. Riofrío-Luzcando, D., Ramírez, J., Moral, C., de Antonio, A., & Berrocal-Lobo, M. (2019). Visualizing a collective student model for procedural training environments. Multimedia Tools and Applications, 78(8), 10983–11010. https://doi.org/10.1007/s11042-018-6641-x.

    Article  Google Scholar 

  123. Rodgers, E. (2017). Scaffolding word solving while reading: New research insights. The Reading Teacher, 70(5), 525–532. https://doi.org/10.1002/trtr.1548.

    Article  Google Scholar 

  124. Rodgers, E., D'Agostino, J. V., Harmey, S. J., Kelly, R. H., & Brownfield, K. (2016). Examining the nature of scaffolding in an early literacy intervention. Reading Research Quarterly, 51(3), 345–360. https://doi.org/10.1002/rrq.142.

    Article  Google Scholar 

  125. Rosé, C. P., Jordan, P., Ringenberg, M., Siler, S., VanLehn, K., & Weinstein, A. (2001). Interactive conceptual tutoring in Atlas-Andes. In J. D. Moore, C. L. Redfield, & W. L. Johnson (Eds.), Proceedings of the 10th International Conference on Artificial Intelligence in Education, AIED 2001, San Antonio, TX, USA, May 19–23 2001 (Vol. 68, pp. 256–266, Frontiers in Artificial Intelligence and Applications): IOS Press. https://www.semanticscholar.org/paper/Interactive-Conceptual-Tutoring-in-Atlas-Andes-Ros-h-eedman/65c14e3e04a9438142fb0a0dbf9647f1b6d11863. Accessed 25 Sept. 2020.

  126. Rosé, C. P., Kumar, R., Aleven, V., Robinson, A., & Wu, C. (2006). CycleTalk: Data driven design of support for simulation based learning. International Journal of Artificial Intelligence in Education, 16(2), 195–223. https://psycnet.apa.org/record/2006-10773-006. Accessed 25 Sept. 2020.

  127. Rueda, U., Arruarte, A., & Elorriaga, J. A. (2007). A visual concept mapping medium to open student and group models. In E. Hamilton, & A. Hurford (Eds.), Supplementary Proceedings of the 13th International Conference of Artificial Intelligence in Education (AIED 2007): Workshop on Assessment of Group and Individual Learning Through Intelligent Visualization (AGILEeViz), Marina del Rey, California, USA, July 9–13 2007 (pp. 4–7). https://www.academia.edu/26781777/Assessment_of_Group_and_Individual_Learning_through_Intelligent_Visualization_Workshop_AGILeViz_. Accessed 25 Sept. 2020.

  128. Rueda, U., Larrañaga, M., Ferrero, B., Arruarte, A., & Elorriaga, J. (2003). Study of graphical issues in a tool for dynamically visualising student models. In Supplementary Proceedings of the 11th International Conference on Artificial Intelligence in Education (AIED 2003): Workshop on learner Modelling for reflection., Sydney, Australia, July 20-24 2003.

  129. Rus, V., Conley, M., & Graesser, A. C. (2014a). The DENDROGRAM model of instruction: On instructional strategies and their implementation in DeepTutor. In R. A. Sottilare, A. Graesser, X. Hu, & B. Goldberg (Eds.), Design Recommendations for Intelligent Tutoring Systems: Instructional Management (Vol. 2, pp. 311-325, adaptive tutoring series). Orlando, FL, USA: US Army research lab.

  130. Rus, V., D’Mello, S., Hu, X., & Graesser, A. C. (2013a). Recent advances in conversational intelligent tutoring systems. AI Magazine, 34(3), 42–54. https://doi.org/10.1609/aimag.v34i3.2485.

    Article  Google Scholar 

  131. Rus, V., Niraula, N., Lintean, M., Banjade, R., Stefanescu, D., & Baggett, W. (2013b). Recommendations for the generalized intelligent framework for tutoring based on the development of the DeepTutor tutoring service. In Proceedings of the User Meeting on Generalized Intelligent Framework for Tutoring (GIFT), in conjunction with the 16th International Conference on Artificial Intelligence in Education (AIED 2013), Memphis, TN, USA, 2013 (pp. 9-13).

  132. Rus, V., Niraula, N. B., & Banjade, R. (2015). DeepTutor: An effective, online intelligent tutoring system that promotes deep learning. In B. Bonet, & S. Koenig (Eds.), Proceedings of the 29th AAAI Conference on Artificial Intelligence, AIED 2015, Austin, TX, USA, Jan. 25-29 2015 (pp. 4294–4295): AAAI press.

  133. Rus, V., Stefanescu, D., Baggett, W., Niraula, N., Franceschetti, D., & Graesser, A. C. (2014b). Macro-adaptation in conversational intelligent tutoring matters. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS 2014, Honolulu, HI, USA, June 5-9 2014 (Vol. 8474, pp. 242-247, lecture notes in computer science). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-07221-0_29.

  134. San Martin, M. G. (2018). Scaffolding the learning-to-teach process: A study in an ESL teacher education programme in Argentina. Profile: Issues in Teachers’ Professional Development, 20(1), 121-134, doi: https://doi.org/10.15446/profile.v20n1.63032.

  135. Shahrour, G., & Bull, S. (2009). Interaction preferences and learning in an inspectable learner model for language. In V. Dimitrova, R. Mizoguchi, B. du Boulay, & A. C. Graesser (Eds.), Proceedings of the 14th conference on artificial intelligence in education, AIED 2009, Brighton, UK, July 6–10 2009 (Vol. 200, pp. 659–661). Amsterdam: IOS Press. https://doi.org/10.3233/978-1-60750-028-5-659.

    Google Scholar 

  136. Shute, V. J. (1995). SMART: Student modeling approach for responsive tutoring. User Modeling and User-Adapted Interaction, 5, 1–44. https://doi.org/10.1007/BF01101800.

    Article  Google Scholar 

  137. Suleman, R. M., Mizoguchi, R., & Ikeda, M. (2016). A new perspective of negotiation-based dialog to enhance metacognitive skills in the context of open learner models. International Journal of Artificial Intelligence in Education, 26(4), 1069–1115. https://doi.org/10.1007/s40593-016-0118-8.

    Article  Google Scholar 

  138. Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2(1), 59–89. https://doi.org/10.1207/s1532690xci0201_3.

    Article  Google Scholar 

  139. Tchetagni, J., Nkambou, R., & Bourdeau, J. (2007). Explicit reflection in prolog-tutor. International Journal of Artificial Intelligence in Education, 17(2), 169–215. https://telearn.archives-ouvertes.fr/hal-00190040. Accessed 25 Sept. 2020.

  140. Thomson, D., & Mitrovic, A. (2010). Preliminary evaluation of a negotiable student model in a constraint-based ITS. Research and Practice in Technology Enhanced Learning, 5(01), 19–33. https://doi.org/10.1142/S1793206810000797.

    Article  Google Scholar 

  141. Tsiriga, V., & Virvou, M. (2002). Initializing the student model using stereotypes and machine learning. In P. borne (Ed.), Proceedings of the 2002 IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, Oct. 6-9 2002 (Vol. 2, IEEE Xplore): IEEE. doi:https://doi.org/10.1109/ICSMC.2002.1173446.

  142. van de Pol, J., Mercer, N., & Volman, M. (2019). Scaffolding student understanding in small-group work: Students’ uptake of teacher support in subsequent small-group interaction. Journal of the Learning Sciences, 28(2), 206–239. https://doi.org/10.1080/10508406.2018.1522258.

    Article  Google Scholar 

  143. van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296. https://doi.org/10.1007/s10648-010-9127-6.

    Article  Google Scholar 

  144. van de Pol, J., Volman, M., Oort, F., & Beishuizen, J. (2014). Teacher scaffolding in small-group work: An intervention study. Journal of the Learning Sciences, 23(4), 600–650. https://doi.org/10.1080/10508406.2013.805300.

    Article  Google Scholar 

  145. van de Pol, J., Volman, M., Oort, F., & Beishuizen, J. (2015). The effects of scaffolding in the classroom: Support contingency and student independent working time in relation to student achievement, task effort and appreciation of support. Instructional Science, 43(5), 615–641. https://doi.org/10.1007/s11251-015-9351-z.

    Article  Google Scholar 

  146. van Gog, T., Paas, F., & van Merriënboer, J. J. G. (2006). Effects of process-oriented worked examples on troubleshooting transfer performance. Learning and Instruction, 16(2), 154–164. https://doi.org/10.1016/j.learninstruc.2006.02.003.

    Article  Google Scholar 

  147. Van Labeke, N., Brna, P., & Morales, R. (2007). Opening up the interpretation process in an open learner model. International Journal of Artificial Intelligence in Education, 17(3), 305–338.

    Google Scholar 

  148. VanLehn, K. (1988). Student modeling. In M. C. Polson & J. J. Richardson (Eds.), Foundations of intelligent tutoring systems (Vol. 55, pp. 55–78). Hillsdale: Lawrence Erlbaum Associates, Inc..

    Google Scholar 

  149. VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education, 16(3), 227-265, https://dl.acm.org/doi/10.5555/1435351.1435353.

  150. VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rosé, C. P. (2007). When are tutorial dialogues more effective than reading? Cognitive Science, 31(1), 3-62, doihttps://doi.org/10.1080/03640210709336984.

  151. Vygotsky, L. S. (1978). Mind in society: The development of higher mental process. Cambridge: Harvard University Press.

    Google Scholar 

  152. Ward, A., & Litman, D. (2011). Adding abstractive reflection to a tutorial dialog system. In P. McCarthy, & C. Murray (Eds.), Proceedings of the 24th International Florida Artificial Intelligence Research Society Conference, FLAIRS-24, Palm Beach, FL, USA, May 18-20 2011: AAAI press. https://dblp.org/db/conf/flairs/flairs2011.html.

  153. Weerasinghe, A., Mitrovic, A., & Martin, B. (2009). Towards individualized dialogue support for ill-defined domains. International Journal of Artificial Intelligence in Education, 19(4), 357–379.

    Google Scholar 

  154. Weerasinghe, A., Mitrovic, A., Thomson, D., Mogin, P., & Martin, B. (2011). Evaluating a general model of adaptive tutorial dialogues. In G. Biswas, S. Bull, J. Kay, & A. Mitrović (Eds.), Proceedings of the 15th International Conference on Artificial Intelligence in Education, AIED 2011, Auckland, New Zealand, 2011 (Vol. 6738, pp. 394-402, lecture notes in computer science). Berlin, Heidelberg: Springer-Verlag. https://dl.acm.org/doi/10.5555/2026506.2026559.

  155. Weerasinghe, A., Mitrovic, A., Van Zijl, M., & Martin, B. (2010). Evaluating the effectiveness of adaptive tutorial dialogues in database design. In Proceedings of the 18th International Conference on Computers in Education, ICCE 2010, Putrajaya, Malaysia, Nov. 29 - Dec. 3 2010 (pp. 33-40). http://hdl.handle.net/10092/5050. Accessed 25 Sept. 2020.

  156. Wood, D. (2001). Scaffolding, contingent tutoring, and computer-supported learning. International Journal of Artificial Intelligence in Education, 12(3), 280–292.

    Google Scholar 

  157. Wood, D. (2003). The why? What? When? And how? Of tutoring: The development of helping and tutoring skills in children. Literacy, Teaching and Learning, 7(1/2), 1–30. https://eric.ed.gov/?id=EJ966143. Accessed 25 Sept. 2020.

  158. Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x.

    Article  Google Scholar 

  159. Wood, D., & Middleton, D. (1975). A study of assisted problem-solving. British Journal of Psychology, 66(2), 181–191. https://doi.org/10.1111/j.2044-8295.1975.tb01454.x.

    Article  Google Scholar 

  160. Wood, D., Wood, H., & Middleton, D. (1978). An experimental evaluation of four face-to-face teaching strategies. International Journal of Behavioral Development, 1(2), 131–147. https://doi.org/10.1177/016502547800100203.

    Article  Google Scholar 

  161. Xhakaj, F., Aleven, V., & McLaren, B. M. (2016). How teachers use data to help students learn: Contextual inquiry for the design of a dashboard. In K. Verbert, M. Sharples, & T. Klobučar (Eds.), Proceedings of 11th European Conference on Technology Enhanced Learning (EC-TEL 2016): Adaptive and Adaptable Learning, Lyon, France, Sept. 13-16 2016 (Vol. 9891, pp. 340-354, lecture notes in computer science). Cham: Springer. doi: https://doi.org/10.1007/978-3-319-45153-4_26.

  162. Xhakaj, F., Aleven, V., & McLaren, B. M. (2017a). Effects of a teacher dashboard for an intelligent tutoring system on teacher knowledge, lesson planning, lessons and student learning. In É. Lavoué, H. Drachsler, K. Verbert, J. Broisin, & M. Pérez-Sanagustín (Eds.), Proceedings of the 12th European Conference on Technology Enhanced Learning (EC-TEL 2017): Data Driven Approaches in Digital Education, Tallinn, Estonia, Sept. 12–15 2017 (Vol. 10474, pp. 582–585, Lecture Notes in Computer Science). Cham: Springer. https://doi.org/10.1007/978-3-319-66610-5_23.

  163. Xhakaj, F., Aleven, V., & McLaren, B. M. (2017b). Effects of a teacher dashboard for an intelligent tutoring system on teacher knowledge, lesson plans and class sessions. In E. André, R. S. J. d. Baker, X. Hu, M. M. T. Rodrigo, & B. du Boulay (Eds.), Proceedings of the 18th International Conference on Artificial Intelligence in Education, AIED 2017, 2017 (Vol. 10331, pp. 582-585, lecture notes in computer science). Cham: Springer. doi:https://doi.org/10.1007/978-3-319-66610-5_23.

  164. Yacef, K. (2005). The logic-ITA in the classroom: A medium scale experiment. International Journal of Artificial Intelligence in Education, 15(1), 41–62. https://telearn.archives-ouvertes.fr/hal-00257107/document. Accessed 25 Sept. 2020.

  165. Zapata-Rivera, D. (2019). Supporting human inspection of adaptive instructional systems. In R. Sottilare, & J. Schwarz (Eds.), Proceedings of the 21st International Conference on Human-Computer Interaction, HCII 2019: Adaptive Instructional Systems, Orlando, FL, USA, July 26–31 2019 (Vol. 11597, pp. 482-490, lecture notes in computer science). Cham: Springer. doi: https://doi.org/10.1007/978-3-030-22341-0_38.

  166. Zapata-Rivera, D., & Greer, J. E. (2001). Externalising learner modelling representations. In S. Ainsworth, & R. Cox (Eds.), Proceedings of the Workshop on External Representations of AIED: Multiple Forms and Multiple Roles, in conjunction with the 10th International Conference on Artificial Intelligence in Education, AIED 2001, San Antonio, TX, USA, May 20 2001 (pp. 71–76). https://www.researchgate.net/publication/228782374_Externalising_learner_modelling_representations. Accessed 25 Sept. 2020.

  167. Zapata-Rivera, D., & Greer, J. E. (2002). Exploring various guidance mechanisms to support interaction with inspectable learner models. In S. A. Cerri, G. Gouardères, & F. Paraguaçu (Eds.), Proceedings of the 6th International Conference on Intelligent Tutoring Systems, ITS 2002, Biarritz, France and San Sebastian, Spain, June 2-7 2002 (Vol. 2363, pp. 442-452, lecture notes in computer science). Berlin, Heidelberg: Springer. doi:https://doi.org/10.1007/3-540-47987-2_47.

  168. Zapata-Rivera, D., & Greer, J. E. (2003). Analyzing student reflection in the learning game. In S. Bull, P. Brna, & V. Dimitrova (Eds.), Supplementary Proceedings of the 11th International Conference on Artificial Intelligence in Education, AIED 2003, Sydney, Australia, July 20-24 2003 (pp. 288-298): University of Sydney. https://books.google.com/books/about/AIED_2003.html?id=KozBNQAACAAJ. Accessed 25 Sept. 2020.

  169. Zapata-Rivera, D., & Greer, J. E. (2004a). Inspectable Bayesian student modelling servers in multi-agent tutoring systems. International Journal of Human-Computer Studies, 61(4), 535–563. https://doi.org/10.1016/j.ijhcs.2003.12.017.

    Article  Google Scholar 

  170. Zapata-Rivera, D., & Greer, J. E. (2004b). Interacting with inspectable Bayesian student models. International Journal of Artificial Intelligence in Education, 14(2), 127-163, https://dl.acm.org/doi/10.5555/1434858.1434859.

  171. Zapata-Rivera, D., Hansen, E., Shute, V. J., Underwood, J. S., & Bauer, M. (2007). Evidence-based approach to interacting with open student models. International Journal of Artificial Intelligence in Education, 17(3), 273-303, doi:https://dl.acm.org/doi/10.5555/1435391.1435395.

  172. Zapata-Rivera, D., & Katz, I. R. (2014). Keeping your audience in mind: Applying audience analysis to the design of interactive score reports. Assessment in Education: Principles, Policy & Practice, 21(4), 442–463. https://doi.org/10.1080/0969594X.2014.936357.

    Article  Google Scholar 

  173. Zapata-Rivera, D., Lehman, B., Sparks, J. R., Por, H.-H., & James, K. (2018). Identifying and addressing unexpected responses in conversation-based assessments. In J. Carlson (Ed.), ETS Research Memorandum Series (Vol. RM-18-13). Princeton, NJ, USA.

  174. Zapata-Rivera, D., Zwick, R., & Vezzu, M. (2016). Exploring the effectiveness of a measurement error tutorial in helping teachers understand score report results. Educational Assessment, 21(3), 215–229. https://doi.org/10.1080/10627197.2016.1202110.

    Article  Google Scholar 

  175. Zhou, Y., & Evens, M. W. (1999). A practical student model in an intelligent tutoring system. In Proceedings of the 11th International Conference on Tools with Artificial Intelligence, Chicago, IL, USA, Nov. 8-11 1999 (pp. 13-18): IEEE computer society. doi:https://doi.org/10.1109/TAI.1999.809759.

Download references

Acknowledgements

We thank Sarah Birmingham, Dennis Lusetich, and Scott Silliman for many valuable contributions to this project. Insightful comments from the reviewers and editors on a previous draft broadened our thinking about the state of TDSs and important “next steps” that need to be taken. This research was supported by the Institute of Education Sciences, U.S. Department of Education, through grant R305A150155 to the University of Pittsburgh. The opinions expressed are those of the authors and do not necessarily represent the views of the Institute or the U.S. Department of Education.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandra Katz.

Additional information

A personal note from the first author (Sandy Katz)

I arrived at the ITS 2018 venue in Montreal unfashionably late for the morning’s keynote address. Trying to slip in undetected, while crossing the hotel lobby I heard a familiar voice call my name. It was Jim, walking slowly towards me with a cane that I couldn’t recall seeing him use before, but it had been several years since our conference paths last crossed. We caught up easily, as we had over the years at ITS-related conferences near and far, from Montreal to Crimea. Neither of us made it to the keynote, but I had no regrets, especially after learning that Jim passed away just a few days later.

If successful, this paper pays tribute to Jim and the lasting impression that his keen insights about how to wield technology to provide students with adaptive tutoring made on my work. But this tribute would not be complete without noting that Jim was himself a model of kindness, fairness, and generosity. We still have much to learn from him, morally and intellectually.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katz, S., Albacete, P., Chounta, IA. et al. Linking Dialogue with Student Modelling to Create an Adaptive Tutoring System for Conceptual Physics. Int J Artif Intell Educ (2021). https://doi.org/10.1007/s40593-020-00226-y

Download citation

Keywords

  • Tutorial dialogue systems
  • Adaptive instruction
  • Scaffolding
  • Physics education