The Impacts of Domain-General vs. Domain-Specific Diagramming Tools on Writing

  • Brendan Barstow
  • Lisa Fazio
  • Jordan Lippman
  • Mohammad Falakmasir
  • Christian D. SchunnEmail author
  • Kevin D. Ashley


Argument diagramming is the process of spatially representing an argument by its component parts and their relationships. A growing body of evidence supports the use of argument diagramming to aid student learning and writing within disciplines including science education. However, most of these studies have focused on basic contrasts between diagramming and no diagramming. The purpose of this study was to learn how different diagramming frameworks affect the benefits afforded by argument diagramming. Three groups of undergraduate students in psychology research methods lab courses were given either no diagramming support, support with a domain-general framework, or support with a domain-specific framework to help them write a research paper introduction. Students given any diagramming support included more relevant citations and considered opposing citations in their papers. Students using the domain-specific framework wrote more about the scientific validity of cited studies than the other two groups, whereas students using the domain-general framework trended towards included more supporting citations.


Argument diagram Writing instruction Science instruction Educational intervention Representation 



This research was supported by the National Science Foundation Grant IIS-1122504. Any opinions expressed in this work reflect those of the authors and do not necessarily reflect those of the National Science Foundation or the University of Pittsburgh. We would like to thank Diane Litman and Huy Nyugen for their help and feedback on this project.


  1. Anderson, T., & Shattuck, J. (2012). Design-based research a decade of progress in education research? Educational Researcher, 41(1), 16–25.CrossRefGoogle Scholar
  2. Andrews, R. (1995). Teaching and learning argument. London: Cassell.Google Scholar
  3. Andrews, R. (2010). Argumentation in higher education: improving practice through theory and research. New York: Routledge.Google Scholar
  4. Andrews, R., & Mitchell, S. (2001). Essays in argument. Middlesex University Press.Google Scholar
  5. Applebee, A. N., & Langer, J. A. (2011). A snapshot of writing instruction in middle schools and high schools. The English Journal, 100(6), 14–27.Google Scholar
  6. Arum, R., & Roska, J. (2011). Academically adrift: limited learning on college campuses. Chicago: University of Chicago Press.Google Scholar
  7. Chang, K.-E., Sung, Y. T., & Chen, I.-D. (2002). The effect of concept mapping to enhance text comprehension and summarization. The Journal of Experimental Education, 71(1), 5–23. doi: 10.1080/00220970209602054.CrossRefGoogle Scholar
  8. Cheng, P. C.-H. (1992). Diagrammatic reasoning in scientific discovery: modeling Galileo’s kinematic diagrams. In H. Narayanan (Ed.), AAAI technical report on reasoning with diagrammatic representations (Report No. SS-92-02, pp. 33–38). Menlo Park: American Association for Artificial Intelligence.Google Scholar
  9. Cheng, P. C.-H., & Simon, H. A. (1992). The right representation for discovery: finding the conservation of momentum. In D. Sleeman & P. Edwards (Eds.), Machine learning: proceedings of the ninth international conference (pp. 62–71). San Mateo: Kaufmann.Google Scholar
  10. Cho, K., & Schunn, C. D. (2007). Scaffolded writing and rewriting in the discipline: a web-based reciprocal peer review system. Computers and Education, 48(3), 409–426.CrossRefGoogle Scholar
  11. Cho, K., & Schunn, C. D. (2010). Developing writing skills through students giving instructional explanations. In M. K. Stein & L. Kucan (Eds.), Instructional explanations in the disciplines: talk, texts and technology. New York: Springer.Google Scholar
  12. Chryssafidou, E. (2014). Argument diagramming and planning cognition in argumentative writing (Doctoral dissertation, University of Birmingham).Google Scholar
  13. De La Paz, S., Ferretti, R., Wissinger, D., Yee, L., & MacArthur, C. (2012). Adolescents’ disciplinary use of evidence, argumentative strategies, and organizational structure in writing about historical controversies. Written Communication, 29(4), 412–454.CrossRefGoogle Scholar
  14. Goldman, A. I. (1994). Argumentation and social epistemology. The Journal of Philosophy, 91(1), 27–49.CrossRefGoogle Scholar
  15. Griffin, C. C., Malone, L. D., & Kameenui, E. J. (1995). Effects of graphic organizer instruction non fifth-grade students. The Journal of Educational Research, 89(2), 98–107. doi: 10.1080/00220671.1995.9941200.CrossRefGoogle Scholar
  16. Gustafson, B. J., & Shanahan, M. C. (2007). Supporting inquiry in the elementary classroom: the role of scientific argument. Science Educ, 38(2), 1.Google Scholar
  17. Hahn, U., & Oaksford, M. (2012). Rational argument. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 277–300). New York: Oxford University Press.Google Scholar
  18. Hand, B., Prain, V., & Wallace, C. (2002). Influences of writing tasks on students’ answers to recall and higher-level test questions. Research in Science Education, 32, 19–34. doi: 10.1023/A:1015098605498.CrossRefGoogle Scholar
  19. Hand, B., Wallace, C. W., & Yang, E. (2004). Using a science writing heuristic to enhance learning outcomes from laboratory activities in seventh-grade science: quantitative and qualitative aspects. International Journal of Science Education, 26(2), 131–149. doi: 10.1080/0950069032000070252.CrossRefGoogle Scholar
  20. Harrell, M. (2008). No computer program required: even pencil-and-paper argument mapping improves critical thinking skills. Teaching Philosophy, 31, 351–374.CrossRefGoogle Scholar
  21. Harrell, M. (2011). Argument diagramming and critical thinking in introductory philosophy. Higher Education Research & Development, 30(3), 371–385.CrossRefGoogle Scholar
  22. Harrell, M. (2012). Assessing the efficacy of argument diagramming to teach critical thinking skills in introduction to philosophy. Inquiry, 27(2), 31–38. doi: 10.5840/inquirtyct201227210.Google Scholar
  23. Harrell, M. (2013). Improving first-year writing using argument diagramming. Proceedings of the 35th Annual Conference of the Cognitive Science Society. Google Scholar
  24. Keys, C. W., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36(10), 1065–1084. doi: 10.1002/(SICI)1098-2736(199912)36:10<1065::AID-TEA2>3.0.CO;2-I.CrossRefGoogle Scholar
  25. Kiuhara, S. A., Graham, S., & Hawken, L. S. (2009). Teaching writing to high school students: a national survey. Journal of Educational Psychology, 101, 136–160. doi: 10.1037/a0013097.CrossRefGoogle Scholar
  26. Knudson, R. E. (1992). Analysis of argumentative writing at two grade levels. The Journal of Educational Research, 85(3), 169–179. doi: 10.1080/00220671.1992.9944434.CrossRefGoogle Scholar
  27. Kuhn, D. (2013). Reasoning. In P. Zelazo (Ed.), Oxford handbook of developmental psychology (pp. 744–764). New York: Oxford University Press.Google Scholar
  28. Kuhn, D., Zillmer, N., Crowell, A., & Zavala, J. (2013). Developing norms of argumentation: metacognitive, epistemological, and social dimensions of developing argumentative competence. Cognition and Instruction, 31(4), 456–496. doi: 10.1080/07370008.2013.830618.CrossRefGoogle Scholar
  29. Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–100. doi: 10.1111/j.1551-6708.1987.tb00863.x.CrossRefGoogle Scholar
  30. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: a review of the research. Journal of Research in Science Teaching, 29(4), 331–359.CrossRefGoogle Scholar
  31. Leitão, S. (2003). Evaluating and selecting counterarguments: studies of children’s rhetorical awareness. Written Communication, 20(3), 269–306. doi: 10.1177/0741088303257507.CrossRefGoogle Scholar
  32. Loll, F., & Pinkwart, N. (2013). LASAD: flexible representations for computer-based collaborative argumentation. International Journal of Human-Computer Studies, 71(1), 91–109. doi: 10.1016/j.ijhcs.2012.04.002.CrossRefGoogle Scholar
  33. Lynch, C. (2014). The Diagnosticity of Argument Diagrams. Doctoral Dissertation, University of Pittsburgh.Google Scholar
  34. Lynch, C., Ashley, K. D., & Chi, M. (2014). Can diagrams predict essay grades? Lecture Notes in Computer Science, 8474, 260–265. doi: 10.1007/978-3-319-07221-0_32.CrossRefGoogle Scholar
  35. Mandler, J. M., & Ritchey, G. H. (1977). Long-term memory for pictures. Journal of Experimental Psychology, 3(4), 386–396. doi: 10.3758/BF03196949.Google Scholar
  36. McCagg, E. C., & Dansereau, D. F. (1991). A convergent paradigm for examining knowledge mapping as a learning strategy. Journal of Educational Research, 84, 317–324. doi: 10.1080/00220671.1991.9941812.CrossRefGoogle Scholar
  37. Novick, L. R. (2000). Spatial diagrams: key instruments in the toolbox for thought. Psychology of Learning and Motivation, 40(2000), 279–325. doi: 10.1016/s0079-7421(00)80023-7.CrossRefGoogle Scholar
  38. Nussbaum, E. M., & Schraw, G. (2007). Promoting argument-counterargument integration in students’ writing. The Journal of Experimental Education, 76(1), 59–92. doi: 10.3200/JEXE.76.1.59-92.CrossRefGoogle Scholar
  39. Oostdam, R. J., & Emmelot, Y. W. (1991). Education in argumentation skills at Dutch secondary schools. Proceedings of the Second International Conference on Argumentation. Amsterdam: Sic Sat.Google Scholar
  40. Oostdam, R., Glopper, K. D., & Eiting, M. H. (1994). Argumentation in written discourse: secondary school students' writing problems. Studies in Pragma-dialectcs. Amsterdam: Sic Sat.Google Scholar
  41. Osborne, J., Simon, S., Christodoulou, A., Howell-Richardson, C., & Richardson, K. (2013). Learning to argue: a study of four schools and their attempt to develop the use of argumentation as a common instructional practice and its impact on students. Journal of Research in Science Teaching, 50(3), 315–347. doi: 10.1002/tea.21073.CrossRefGoogle Scholar
  42. Paivio, A. (1986). Mental representations: a dual coding approach. New York: Oxford University Press.Google Scholar
  43. Perkins, D. N., Faraday, M., & Bushey, B. (1991). Everyday reasoning and the roots of intelligence. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education (pp. 83–105). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  44. Schwarz, B. B., Neuman, Y., Gil, J., & Ilya, M. (2003). Construction of collective and individual knowledge in argumentative activity. Journal of the Learning Sciences, 12(2), 219–256. doi: 10.1207/S15327809JLS1202_3.CrossRefGoogle Scholar
  45. Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures. Journal of Verbal Learning and Verbal Behavior, 6(1), 156–163. doi: 10.1016/S0022-5371(67)80067-7.CrossRefGoogle Scholar
  46. Standing, L. (1973). Learning 10000 pictures. Quarterly Journal of Experimental Psychology, 25(2), 207–222. doi: 10.1080/14640747308400340.CrossRefGoogle Scholar
  47. Stapleton, P. (2001). Assessing critical thinking in the writing of Japanese university students: insights about assumptions and content familiarity. Written Communication, 18(4), 506–548. doi: 10.1177/0741088301018004004.CrossRefGoogle Scholar
  48. Stegmann, K., Weinberger, A., & Fischer, F. (2007). Facilitating argumentative knowledge construction with computer-supported collaboration scripts. International Journal of Computer-Supported Collaborative Learning, 2(4), 421–447.CrossRefGoogle Scholar
  49. Stegmann, K., Wecker, C., Weinberger, A., & Fischer, F. (2012). Collaborative argumentation and cognitive elaboration in a computer-supported collaborative learning environment. Instructional Science, 40(2), 297–323.CrossRefGoogle Scholar
  50. Stull, A. T., & Mayer, R. E. (2007). Learning by doing versus learning by viewing: three experimental comparisons of learner-generated versus author-provided graphic organizers. Journal of Educational Psychology, 99(4), 808–820. doi: 10.1002/pfi.20028.CrossRefGoogle Scholar
  51. Suthers, D.D., (2003). Representational guidance for collaborative inquiry. In J. Andriessen, M. Baker, & D. Suthers, (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (Vol. 1), pp. 27–46. Springer Science & Business Media.Google Scholar
  52. Thomm, E., Bromme, R. (in press). How source information shapes lay interpretations of science conflicts: interplay between sourcing, conflict explanation, source evaluation, and claim evaluation. Reading and Writing.Google Scholar
  53. Topping, K. J. (2005). Trends in peer learning. Educational Psychology, 25(6), 631–645.CrossRefGoogle Scholar
  54. Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  55. Trafton, J. G., Trickett, S. B., & Mintz, F. E. (2005). Connecting internal and external representations: spatial transformations of scientific visualizations. Foundations of Science, 10, 89–106. doi: 10.1007/s10699-005-3007-4.CrossRefGoogle Scholar
  56. Wolfe, C. R. (2011). Argumentation across the curriculum. Written Communication, 28(2), 193–219.CrossRefGoogle Scholar
  57. Wolfe, C. R., Britt, M. A., & Butler, J. A. (2009). Argumentation schema and the myside bias in written argumentation. Written Communication, 26, 183–209.CrossRefGoogle Scholar

Copyright information

© International Artificial Intelligence in Education Society 2016

Authors and Affiliations

  • Brendan Barstow
    • 1
  • Lisa Fazio
    • 1
    • 2
  • Jordan Lippman
    • 1
  • Mohammad Falakmasir
    • 1
  • Christian D. Schunn
    • 1
    Email author
  • Kevin D. Ashley
    • 1
  1. 1.Learning Research and Development CenterUniversity of PittsburghPittsburghUSA
  2. 2.Department of Psychology and Human DevelopmentVanderbilt UniversityNashvilleUSA

Personalised recommendations