Alizon, F., S.B. Shooter, and T.W. Simpson. 2009. Henry Ford and the Model T: Lessons for product platforming and mass customization. Design Studies 30(5): 588–605.
Article
Google Scholar
Baltimore, D., F. Baylis, P. Berg, G.Q. Daley, J.A. Doudna, E.S. Lander, R. Lovell-Badge, P. Ossorio, D. Pei, A. Thrasher, E. Winnacker, and Q. Zhou. 2015a. On human gene editing: International summit statement. http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=12032015a (Press Release).
Baltimore, D., P. Berg, M. Botchan, D. Carroll, R.A. Charo, G. Church, J.E. Corn, G.Q. Daley, J.A. Doudna, M. Fenner, H.T. Greely, M. Jinek, S.G. Martin, E. Perhoet, J. Puck, S.H. Sternberg, J.S. Weissman, and K.R. Yamamoto. 2015b. A prudent path forward for genomic engineering and germline gene modification. Science 348(6230): 36–38.
Article
Google Scholar
Barrangou, R. 2014. Cas9 targeting and the CRISPR revolution. Science 344(6185): 707–708.
Article
Google Scholar
Bostrom, N. 2007. Technological revolution: Ethics and policy in the dark. In Nanoscale: Issues and perspectives for the nano century, ed. M. Nigel, S. de Cameron, and E.M. Mitchell, 129–152. New York: Wiley.
Chapter
Google Scholar
Brunet, T.D.P. 2016. Aims and methods of biosteganography. Journal of Biotechnology 226: 56–64.
Article
Google Scholar
Carroll, D. 2014. Genome engineering with targetable nucleases. Annual Review of Biochemistry 83: 409–439.
Article
Google Scholar
Carroll, S.B. 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134(1): 25–36.
Article
Google Scholar
Charo, R.A., and H.T. Greely. 2015. CRISPR critters and CRISPR cracks. The American Journal of Bioethics 15(12): 11–17.
Article
Google Scholar
Christenson, C. 1997. The innovator’s dilemma. Cambridge, MA: Harvard Business School Press.
Google Scholar
Chung, E. 2015. Synbiota biohacking kits let you do genetic engineering at home. CBC News, October 15. http://www.cbc.ca/news/technology/biohacking-diy-bio-1.3252735. Retrieved November 4, 2015.
Collingridge, D. 1980. The social control of technology. London: Pinter.
Google Scholar
Colman, A. 2008. Stem cell research in Singapore. Cell 132(4): 519–521.
Article
Google Scholar
Cong, L., F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121): 819–823.
Article
Google Scholar
Cowan, C. 2015. Measuring off-target events, efficiency, and utility. Presentation, information-gathering meeting for the planning committee organizing the international summit on human gene editing, October 5, Washington, DC.
Davies, M.J., V.M. Moore, K.J. Willson, P. Van Essen, K. Priest, H. Scott, E.A. Haan, and A. Chan. 2012. Reproductive technologies and the risk of birth defects. New England Journal of Medicine 366(19): 1803–1813.
Article
Google Scholar
Dhar, D., and J. Hsi-en Ho. 2009. Stem cell research policies around the world. The Yale Journal of Biology and Medicine 82(3): 113–115.
Google Scholar
DiCarlo, J.E., J.E. Norville, P. Mali, X. Rios, J. Aach, and G.M. Church. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research 41(7): 4336–4343.
Article
Google Scholar
Ding, Q., S.N. Regan, Y. Xia, L.A. Oostrom, C.A. Cowan, and K. Musunuru. 2013. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4): 393.
Article
Google Scholar
Duncan, J. 2011. Any colour-so long as it’s black: Designing the Model T Ford 1906–1908. New Zealand: Exisle Publishing.
Google Scholar
Esvelt, K.M., A.L. Smidler, F. Catteruccia, and G.M. Church. 2014. Concerning RNA-guided gene drives for the alteration of wild populations. Elife 3: e03401.
Article
Google Scholar
Friedland, A.E., Y.B. Tzur, K.M. Esvelt, M.P. Colaiácovo, G.M. Church, and J.A. Calarco. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods 10(8): 741–743.
Article
Google Scholar
Friedmann, T., and R. Roblin. 1972. Gene therapy for human genetic disease? Science 175(4025): 949–955.
Article
Google Scholar
Gallo, M., and R. Sayre. 2009. Removing allergens and reducing toxins from food crops. Current Opinion in Biotechnology 20(2): 191–196.
Article
Google Scholar
Gantz, V.M., N. Jasinskiene, O. Tatarenkova, A. Fazekas, V.A. Macias, E. Bier, and A.A. James. 2015. November 23). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences 112(49): E6736–E6743.
Article
Google Scholar
Gibson, D.G., G.A. Benders, C. Andrews-Pfannkoch, E.A. Denisova, H. Baden-Tillson, J. Zaveri, T.B. Stockwell, et al. 2008. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867): 1215–1220.
Article
Google Scholar
Gratz, S.J., A.M. Cummings, J.N. Nguyen, D.C. Hamm, L.K. Donohue, M.M. Harrison, J. Wildonger, and K.M. O’Connor-Giles. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4): 1029–1035.
Article
Google Scholar
Harris, J. 2016. Germline modification and the burden of human existence. Cambridge Quarterly of Healthcare Ethics 25(1): 1–13.
Article
Google Scholar
Hosman, E. 2015. Gene therapy: Comeback? Cost-prohibitive? Biopoliticaltimes.org, November 19. http://www.biopoliticaltimes.org/article.php?id=8991. Retrieved November 20, 2015.
Hwang, W.Y., Y. Fu, D. Reyon, M.L. Maeder, S.Q. Tsai, J.D. Sander, R.T. Peterson, J.R.J. Yeh, and J.K. Joung. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31(3): 227–229.
Article
Google Scholar
Ingrassia, P. 2008. This car changed America: A look at Ford’s Model T, which debuted 100 years ago. Wall Street Journal, September 27. http://www.wsj.com/articles/SB122246777029780525. Retrieved November 24, 2015.
Jiang, W., D. Bikard, D. Cox, F. Zhang, and L.A. Marraffini. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31(3): 233–239.
Article
Google Scholar
Jinek, M., A. East, A. Cheng, S. Lin, E. Ma, and J.A. Doudna. 2013. RNA-programmed genome editing in human cells. Elife 2: e00471.
Article
Google Scholar
Kennedy, E.M., and B.R. Cullen. 2015. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment. Virology 479: 213–220.
Article
Google Scholar
Kline, R., and T. Pinch. 1996. Users as agents of technological change: The social construction of the automobile in the rural United States. Technology and Culture 37(4): 763–795.
Article
Google Scholar
Kutter, S. 2015. Gene therapy conquered: The 1-million-euro syringe. Wirtschafts Woche Medicine, April 4. http://www.wiwo.de/technologie/forschung/gen-therapie-erobert-deutschland-die-1-million-euro-spritze/11499176-all.html. Retrieved November 4, 2015.
Lanphier, E., F. Urnov, S.E. Haecker, M. Werner, and J. Smolenski. 2015. Don’t edit the human germ line. Nature 519(7544): 410–411.
Article
Google Scholar
Larson, C. 2015. China’s bold push into genetically customized animals. Science American, November 17. http://www.scientificamerican.com/article/china-s-bold-push-into-genetically-customized-animals/. Retrieved November 20, 2015.
Ledford, H. 2015. CRISPR, the disruptor. Nature 522(7554): 20–24.
Article
Google Scholar
Lewis, T. 2015. Chinese scientists want to sell these teensy genetically-engineered pigs as pets. Business Insider, September 30. http://www.businessinsider.com/chinese-genetically-engineered-mini-pigs-2015-9. Retrieved November 4, 2015.
Li, D., Z. Qiu, Y. Shao, Y. Chen, Y. Guan, M. Liu, Y. Li, et al. 2013a. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology 31(8): 681–683.
Article
Google Scholar
Li, F.D., Y. Li, H. Liu, H.H. Zhang, C.X. Liu, X.J. Zhang, H.W. Dou, W.X. Yang, and Y.T. Du. 2014. Production of GHR double-allelic knockout Bama pig by TALENs and handmade cloning. Yi Chuan 36(9): 903–911.
Google Scholar
Li, J.F., J.E. Norville, J. Aach, M. McCormack, D. Zhang, J. Bush, G.M. Church, and J. Sheen. 2013b. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31(8): 688–691.
Article
Google Scholar
Li, W., F. Teng, T. Li, and Q. Zhou. 2013c. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology 31(8): 684–686.
Article
Google Scholar
Liang, P., Y. Xu, X. Zhang, C. Ding, R. Huang, Z. Zhang, J. Lv, et al. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell 6(5): 363–372.
Article
Google Scholar
Mali, P., L. Yang, K.M. Esvelt, J. Aach, M. Guell, J.E. DiCarlo, J.E. Norville, and G.M. Church. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121): 823–826.
Article
Google Scholar
Mariscal, C. 2015. Universal biology: Assessing universality from a single example. In The impact of discovering life beyond earth, ed. S. Dick. Cambridge: Cambridge University Press.
Google Scholar
Moor, J.H. 2005. Why we need better ethics for emerging technologies. Ethics and Information Technology 7(3): 111–119.
Article
Google Scholar
Morange, M. 2015. Genetic modification of the human germ line: The reasons why this project has no future. Comptes Rendus Biologies 338(8): 554–558.
Article
Google Scholar
Nekrasov, V., B. Staskawicz, D. Weigel, J.D.C. Jones, and S. Kamoun. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology 31(8): 691–693.
Article
Google Scholar
Nriagu, J.O. 1990. The rise and fall of leaded gasoline. Science of the Total Environment 92: 13–28.
Article
Google Scholar
Peng, Z. 2005. Current status of gendicine in China: Recombinant human Ad-p53 agent for treatment of cancers. Human Gene Therapy 16(9): 1016–1027.
Article
Google Scholar
Räty, J.K., J.T. Pikkarainen, T. Wirth, and S. Ylä-Herttuala. 2008. Gene therapy: The first approved gene-based medicines, molecular mechanisms and clinical indications. Current Molecular Pharmacology 1(1): 13–23.
Article
Google Scholar
Reardon, S. 2015. Leukaemia success heralds wave of gene-editing therapies. Nature News 527(7577): 146–147. http://www.nature.com/news/leukaemia-success-heralds-wave-of-gene-editing-therapies-1.18737. Retrieved November 5, 2015.
Sander, J.D., E.J. Dahlborg, M.J. Goodwin, L. Cade, F. Zhang, D. Cifuentes, S.J. Curtin, S.J. Blackburn, S. Thibodeau-Beganny, Y. Qi, C.J. Pierick, E. Hoffman, M.L. Maeder, C. Khayter, D. Reyon, D. Dobbs, D.M. Langenau, R.M. Stupar, A.J. Giraldez, D.F. Voytas, R.T. Peterson, J.R.J. Yeh, and J.K. Joung. 2011. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods 8(1): 67–69.
Article
Google Scholar
Sherkow, J.S., and H.T. Greely. 2013. What if extinction is not forever? Science 340(6128): 32–33.
Article
Google Scholar
Sigma-Aldrich. 2011. Sigma® life science reaches milestone in gene editing with increased affordability for CompoZr® ZFNs and the expansion of knockout ZFNs to include every gene in mice and rats advances in technology platform and new production center result in more content and less expensive Compozr ZFNs. http://investor.sigmaaldrich.com/releasedetail.cfm?ReleaseID=596302. Retrieved November 4, 2015.
Sontheimer, E.J., and R. Barrangou. 2015. The bacterial origins of the CRISPR genome-editing revolution. Human Gene Therapy 26(7): 413–424.
Article
Google Scholar
Specter, M. 2015. The gene hackers. The New Yorker, November 16. http://www.newyorker.com/magazine/2015/11/16/the-gene-hackers. Retrieved November 20, 2015.
Sturgeon, T., and Florida, R. (2000). Globalization and jobs in the automotive industry. Final report to the Alfred P. Sloan Foundation. International Motor Vehicle Program, Center for Technology, Policy, and Industrial Development, Massachusetts Institute of Technology. https://www.creativeclass.com/rfcgdb/articles/2000-The_World_That_Changed_The_Machine_Globalization_And_Jobs_In_The_Automotive_Industry.pdf. Retrieved November 5, 2015.
U.S. Food and Drug Administration (FDA). 2015. Cellular and gene therapy products, October 20. http://www.fda.gov/biologicsbloodvaccines/cellulargenetherapyproducts/default.htm. Retrieved November 4, 2015.
Waltz, E. 2016. Gene-edited CRISPR mushroom escapes US regulation. Nature News 532: 293.
Article
Google Scholar
Wang, H., H. Yang, C.S. Shivalila, M.M. Dawlaty, A.W. Cheng, F. Zhang, and R. Jaenisch. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4): 910–918.
Article
Google Scholar
Williams, K., C. Haslam, and J. Williams. 1992. Ford versus Fordism: The beginning of mass production? Work, Employment & Society 6(4): 517–555.
Article
Google Scholar
Wilson, J.M. 2005. Gendicine: The first commercial gene therapy product; Chinese translation of editorial. Human Gene Therapy 16(9): 1014–1015.
Article
Google Scholar
Womack, J.P., D.T. Jones, and D. Roos. 1990. The machine that changed the world. New York: Rawson Associates.
Google Scholar
Yang, L., M. Güell, D. Niu, H. George, E. Lesha, D. Grishin, J. Aach, et al. 2015. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350(6264): 1101–1104.
Article
Google Scholar
Yeadon, J. 2015. Pros and cons of ZFNs, TALENs, and CRISPR/Cas. https://www.jax.org/news-and-insights/jax-blog/2014/march/pros-and-cons-of-znfs-talens-and-crispr-cas. Retrieved November 4, 2015.
Zhang, L., and Q. Zhou. 2014. CRISPR/Cas technology: a revolutionary approach for genome engineering. Science China Life Sciences 57(6): 639–640.
Article
Google Scholar
Zhou, Q. 2015. Overview of Chinese gene editing research and policy. Question and answer period, information-gathering meeting for the planning committee organizing the international summit on human gene editing, October 5, Washington, DC.
Zimmer, C. 2013. Bringing them back to life. National Geographic 223(4): 28.
Google Scholar