Skip to main content
Log in

CRISPR as a driving force: the Model T of biotechnology

  • Original Article
  • Published:
Monash Bioethics Review Aims and scope Submit manuscript

Abstract

The CRISPR system for gene editing can break, repair, and replace targeted sections of DNA. Although CRISPR gene editing has important therapeutic potential, it raises several ethical concerns. Some bioethicists worry CRISPR is a prelude to a dystopian future, while others maintain it should not be feared because it is analogous to past biotechnologies. In the scientific literature, CRISPR is often discussed as a revolutionary technology. In this paper we unpack the framing of CRISPR as a revolutionary technology and contrast it with framing it as a value-threatening biotechnology or business-as-usual. By drawing on a comparison between CRISPR and the Ford Model T, we argue CRISPR is revolutionary as a product, process, and as a force for social change. This characterization of CRISPR offers important conceptual clarity to the existing debates surrounding CRISPR. In particular, conceptualizing CRISPR as a revolutionary technology structures regulatory goals with respect to this new technology. Revolutionary technologies have characteristic patterns of implementation, entrenchment, and social impact. As such, early identification of technologies as revolutionary may help construct more nuanced and effective ethical frameworks for public policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. CRISPR (clustered regularly interspaced short palindromic repeats) is a nucleic acid construct, Cas is one of the associated families of enzymes (specifically nucleases), which can sever DNA strands in desired locations, triggering cell-repair mechanisms. By providing replacement DNA to the cell, researchers can effectively ‘edit’ genetic material. Unless the context calls for specificity, we will use ‘the CRISPR system’ to refer to the enzyme-mediated gene-editing biotechnology.

References

  • Alizon, F., S.B. Shooter, and T.W. Simpson. 2009. Henry Ford and the Model T: Lessons for product platforming and mass customization. Design Studies 30(5): 588–605.

    Article  Google Scholar 

  • Baltimore, D., F. Baylis, P. Berg, G.Q. Daley, J.A. Doudna, E.S. Lander, R. Lovell-Badge, P. Ossorio, D. Pei, A. Thrasher, E. Winnacker, and Q. Zhou. 2015a. On human gene editing: International summit statement. http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=12032015a (Press Release).

  • Baltimore, D., P. Berg, M. Botchan, D. Carroll, R.A. Charo, G. Church, J.E. Corn, G.Q. Daley, J.A. Doudna, M. Fenner, H.T. Greely, M. Jinek, S.G. Martin, E. Perhoet, J. Puck, S.H. Sternberg, J.S. Weissman, and K.R. Yamamoto. 2015b. A prudent path forward for genomic engineering and germline gene modification. Science 348(6230): 36–38.

    Article  Google Scholar 

  • Barrangou, R. 2014. Cas9 targeting and the CRISPR revolution. Science 344(6185): 707–708.

    Article  Google Scholar 

  • Bostrom, N. 2007. Technological revolution: Ethics and policy in the dark. In Nanoscale: Issues and perspectives for the nano century, ed. M. Nigel, S. de Cameron, and E.M. Mitchell, 129–152. New York: Wiley.

    Chapter  Google Scholar 

  • Brunet, T.D.P. 2016. Aims and methods of biosteganography. Journal of Biotechnology 226: 56–64.

    Article  Google Scholar 

  • Carroll, D. 2014. Genome engineering with targetable nucleases. Annual Review of Biochemistry 83: 409–439.

    Article  Google Scholar 

  • Carroll, S.B. 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134(1): 25–36.

    Article  Google Scholar 

  • Charo, R.A., and H.T. Greely. 2015. CRISPR critters and CRISPR cracks. The American Journal of Bioethics 15(12): 11–17.

    Article  Google Scholar 

  • Christenson, C. 1997. The innovator’s dilemma. Cambridge, MA: Harvard Business School Press.

    Google Scholar 

  • Chung, E. 2015. Synbiota biohacking kits let you do genetic engineering at home. CBC News, October 15. http://www.cbc.ca/news/technology/biohacking-diy-bio-1.3252735. Retrieved November 4, 2015.

  • Collingridge, D. 1980. The social control of technology. London: Pinter.

    Google Scholar 

  • Colman, A. 2008. Stem cell research in Singapore. Cell 132(4): 519–521.

    Article  Google Scholar 

  • Cong, L., F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121): 819–823.

    Article  Google Scholar 

  • Cowan, C. 2015. Measuring off-target events, efficiency, and utility. Presentation, information-gathering meeting for the planning committee organizing the international summit on human gene editing, October 5, Washington, DC.

  • Davies, M.J., V.M. Moore, K.J. Willson, P. Van Essen, K. Priest, H. Scott, E.A. Haan, and A. Chan. 2012. Reproductive technologies and the risk of birth defects. New England Journal of Medicine 366(19): 1803–1813.

    Article  Google Scholar 

  • Dhar, D., and J. Hsi-en Ho. 2009. Stem cell research policies around the world. The Yale Journal of Biology and Medicine 82(3): 113–115.

    Google Scholar 

  • DiCarlo, J.E., J.E. Norville, P. Mali, X. Rios, J. Aach, and G.M. Church. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research 41(7): 4336–4343.

    Article  Google Scholar 

  • Ding, Q., S.N. Regan, Y. Xia, L.A. Oostrom, C.A. Cowan, and K. Musunuru. 2013. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4): 393.

    Article  Google Scholar 

  • Duncan, J. 2011. Any colour-so long as it’s black: Designing the Model T Ford 1906–1908. New Zealand: Exisle Publishing.

    Google Scholar 

  • Esvelt, K.M., A.L. Smidler, F. Catteruccia, and G.M. Church. 2014. Concerning RNA-guided gene drives for the alteration of wild populations. Elife 3: e03401.

    Article  Google Scholar 

  • Friedland, A.E., Y.B. Tzur, K.M. Esvelt, M.P. Colaiácovo, G.M. Church, and J.A. Calarco. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods 10(8): 741–743.

    Article  Google Scholar 

  • Friedmann, T., and R. Roblin. 1972. Gene therapy for human genetic disease? Science 175(4025): 949–955.

    Article  Google Scholar 

  • Gallo, M., and R. Sayre. 2009. Removing allergens and reducing toxins from food crops. Current Opinion in Biotechnology 20(2): 191–196.

    Article  Google Scholar 

  • Gantz, V.M., N. Jasinskiene, O. Tatarenkova, A. Fazekas, V.A. Macias, E. Bier, and A.A. James. 2015. November 23). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences 112(49): E6736–E6743.

    Article  Google Scholar 

  • Gibson, D.G., G.A. Benders, C. Andrews-Pfannkoch, E.A. Denisova, H. Baden-Tillson, J. Zaveri, T.B. Stockwell, et al. 2008. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867): 1215–1220.

    Article  Google Scholar 

  • Gratz, S.J., A.M. Cummings, J.N. Nguyen, D.C. Hamm, L.K. Donohue, M.M. Harrison, J. Wildonger, and K.M. O’Connor-Giles. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4): 1029–1035.

    Article  Google Scholar 

  • Harris, J. 2016. Germline modification and the burden of human existence. Cambridge Quarterly of Healthcare Ethics 25(1): 1–13.

    Article  Google Scholar 

  • Hosman, E. 2015. Gene therapy: Comeback? Cost-prohibitive? Biopoliticaltimes.org, November 19. http://www.biopoliticaltimes.org/article.php?id=8991. Retrieved November 20, 2015.

  • Hwang, W.Y., Y. Fu, D. Reyon, M.L. Maeder, S.Q. Tsai, J.D. Sander, R.T. Peterson, J.R.J. Yeh, and J.K. Joung. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31(3): 227–229.

    Article  Google Scholar 

  • Ingrassia, P. 2008. This car changed America: A look at Ford’s Model T, which debuted 100 years ago. Wall Street Journal, September 27. http://www.wsj.com/articles/SB122246777029780525. Retrieved November 24, 2015.

  • Jiang, W., D. Bikard, D. Cox, F. Zhang, and L.A. Marraffini. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31(3): 233–239.

    Article  Google Scholar 

  • Jinek, M., A. East, A. Cheng, S. Lin, E. Ma, and J.A. Doudna. 2013. RNA-programmed genome editing in human cells. Elife 2: e00471.

    Article  Google Scholar 

  • Kennedy, E.M., and B.R. Cullen. 2015. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment. Virology 479: 213–220.

    Article  Google Scholar 

  • Kline, R., and T. Pinch. 1996. Users as agents of technological change: The social construction of the automobile in the rural United States. Technology and Culture 37(4): 763–795.

    Article  Google Scholar 

  • Kutter, S. 2015. Gene therapy conquered: The 1-million-euro syringe. Wirtschafts Woche Medicine, April 4. http://www.wiwo.de/technologie/forschung/gen-therapie-erobert-deutschland-die-1-million-euro-spritze/11499176-all.html. Retrieved November 4, 2015.

  • Lanphier, E., F. Urnov, S.E. Haecker, M. Werner, and J. Smolenski. 2015. Don’t edit the human germ line. Nature 519(7544): 410–411.

    Article  Google Scholar 

  • Larson, C. 2015. China’s bold push into genetically customized animals. Science American, November 17. http://www.scientificamerican.com/article/china-s-bold-push-into-genetically-customized-animals/. Retrieved November 20, 2015.

  • Ledford, H. 2015. CRISPR, the disruptor. Nature 522(7554): 20–24.

    Article  Google Scholar 

  • Lewis, T. 2015. Chinese scientists want to sell these teensy genetically-engineered pigs as pets. Business Insider, September 30. http://www.businessinsider.com/chinese-genetically-engineered-mini-pigs-2015-9. Retrieved November 4, 2015.

  • Li, D., Z. Qiu, Y. Shao, Y. Chen, Y. Guan, M. Liu, Y. Li, et al. 2013a. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology 31(8): 681–683.

    Article  Google Scholar 

  • Li, F.D., Y. Li, H. Liu, H.H. Zhang, C.X. Liu, X.J. Zhang, H.W. Dou, W.X. Yang, and Y.T. Du. 2014. Production of GHR double-allelic knockout Bama pig by TALENs and handmade cloning. Yi Chuan 36(9): 903–911.

    Google Scholar 

  • Li, J.F., J.E. Norville, J. Aach, M. McCormack, D. Zhang, J. Bush, G.M. Church, and J. Sheen. 2013b. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31(8): 688–691.

    Article  Google Scholar 

  • Li, W., F. Teng, T. Li, and Q. Zhou. 2013c. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology 31(8): 684–686.

    Article  Google Scholar 

  • Liang, P., Y. Xu, X. Zhang, C. Ding, R. Huang, Z. Zhang, J. Lv, et al. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell 6(5): 363–372.

    Article  Google Scholar 

  • Mali, P., L. Yang, K.M. Esvelt, J. Aach, M. Guell, J.E. DiCarlo, J.E. Norville, and G.M. Church. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121): 823–826.

    Article  Google Scholar 

  • Mariscal, C. 2015. Universal biology: Assessing universality from a single example. In The impact of discovering life beyond earth, ed. S. Dick. Cambridge: Cambridge University Press.

    Google Scholar 

  • Moor, J.H. 2005. Why we need better ethics for emerging technologies. Ethics and Information Technology 7(3): 111–119.

    Article  Google Scholar 

  • Morange, M. 2015. Genetic modification of the human germ line: The reasons why this project has no future. Comptes Rendus Biologies 338(8): 554–558.

    Article  Google Scholar 

  • Nekrasov, V., B. Staskawicz, D. Weigel, J.D.C. Jones, and S. Kamoun. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology 31(8): 691–693.

    Article  Google Scholar 

  • Nriagu, J.O. 1990. The rise and fall of leaded gasoline. Science of the Total Environment 92: 13–28.

    Article  Google Scholar 

  • Peng, Z. 2005. Current status of gendicine in China: Recombinant human Ad-p53 agent for treatment of cancers. Human Gene Therapy 16(9): 1016–1027.

    Article  Google Scholar 

  • Räty, J.K., J.T. Pikkarainen, T. Wirth, and S. Ylä-Herttuala. 2008. Gene therapy: The first approved gene-based medicines, molecular mechanisms and clinical indications. Current Molecular Pharmacology 1(1): 13–23.

    Article  Google Scholar 

  • Reardon, S. 2015. Leukaemia success heralds wave of gene-editing therapies. Nature News 527(7577): 146–147. http://www.nature.com/news/leukaemia-success-heralds-wave-of-gene-editing-therapies-1.18737. Retrieved November 5, 2015.

  • Sander, J.D., E.J. Dahlborg, M.J. Goodwin, L. Cade, F. Zhang, D. Cifuentes, S.J. Curtin, S.J. Blackburn, S. Thibodeau-Beganny, Y. Qi, C.J. Pierick, E. Hoffman, M.L. Maeder, C. Khayter, D. Reyon, D. Dobbs, D.M. Langenau, R.M. Stupar, A.J. Giraldez, D.F. Voytas, R.T. Peterson, J.R.J. Yeh, and J.K. Joung. 2011. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods 8(1): 67–69.

    Article  Google Scholar 

  • Sherkow, J.S., and H.T. Greely. 2013. What if extinction is not forever? Science 340(6128): 32–33.

    Article  Google Scholar 

  • Sigma-Aldrich. 2011. Sigma® life science reaches milestone in gene editing with increased affordability for CompoZr® ZFNs and the expansion of knockout ZFNs to include every gene in mice and rats advances in technology platform and new production center result in more content and less expensive Compozr ZFNs. http://investor.sigmaaldrich.com/releasedetail.cfm?ReleaseID=596302. Retrieved November 4, 2015.

  • Sontheimer, E.J., and R. Barrangou. 2015. The bacterial origins of the CRISPR genome-editing revolution. Human Gene Therapy 26(7): 413–424.

    Article  Google Scholar 

  • Specter, M. 2015. The gene hackers. The New Yorker, November 16. http://www.newyorker.com/magazine/2015/11/16/the-gene-hackers. Retrieved November 20, 2015.

  • Sturgeon, T., and Florida, R. (2000). Globalization and jobs in the automotive industry. Final report to the Alfred P. Sloan Foundation. International Motor Vehicle Program, Center for Technology, Policy, and Industrial Development, Massachusetts Institute of Technology. https://www.creativeclass.com/rfcgdb/articles/2000-The_World_That_Changed_The_Machine_Globalization_And_Jobs_In_The_Automotive_Industry.pdf. Retrieved November 5, 2015.

  • U.S. Food and Drug Administration (FDA). 2015. Cellular and gene therapy products, October 20. http://www.fda.gov/biologicsbloodvaccines/cellulargenetherapyproducts/default.htm. Retrieved November 4, 2015.

  • Waltz, E. 2016. Gene-edited CRISPR mushroom escapes US regulation. Nature News 532: 293.

    Article  Google Scholar 

  • Wang, H., H. Yang, C.S. Shivalila, M.M. Dawlaty, A.W. Cheng, F. Zhang, and R. Jaenisch. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4): 910–918.

    Article  Google Scholar 

  • Williams, K., C. Haslam, and J. Williams. 1992. Ford versus Fordism: The beginning of mass production? Work, Employment & Society 6(4): 517–555.

    Article  Google Scholar 

  • Wilson, J.M. 2005. Gendicine: The first commercial gene therapy product; Chinese translation of editorial. Human Gene Therapy 16(9): 1014–1015.

    Article  Google Scholar 

  • Womack, J.P., D.T. Jones, and D. Roos. 1990. The machine that changed the world. New York: Rawson Associates.

    Google Scholar 

  • Yang, L., M. Güell, D. Niu, H. George, E. Lesha, D. Grishin, J. Aach, et al. 2015. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350(6264): 1101–1104.

    Article  Google Scholar 

  • Yeadon, J. 2015. Pros and cons of ZFNs, TALENs, and CRISPR/Cas. https://www.jax.org/news-and-insights/jax-blog/2014/march/pros-and-cons-of-znfs-talens-and-crispr-cas. Retrieved November 4, 2015.

  • Zhang, L., and Q. Zhou. 2014. CRISPR/Cas technology: a revolutionary approach for genome engineering. Science China Life Sciences 57(6): 639–640.

    Article  Google Scholar 

  • Zhou, Q. 2015. Overview of Chinese gene editing research and policy. Question and answer period, information-gathering meeting for the planning committee organizing the international summit on human gene editing, October 5, Washington, DC.

  • Zimmer, C. 2013. Bringing them back to life. National Geographic 223(4): 28.

    Google Scholar 

Download references

Acknowledgments

Funding in support of this research was provided by the Canada Research Chair in Bioethics and Philosophy on “Impact Ethics: Making a Difference” and the Natural Sciences and Engineering Research Council of Canada grant no. GLDSU/447989. We thank the team at Novel Tech Ethics, Dalhousie University for their feedback on earlier drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Mariscal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariscal, C., Petropanagos, A. CRISPR as a driving force: the Model T of biotechnology. Monash Bioeth. Rev. 34, 101–116 (2016). https://doi.org/10.1007/s40592-016-0062-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40592-016-0062-2

Keywords

Navigation