Abstract
In this paper, we introduce and study some new subclasses of analytic functions defined by the combination of Al-Oboudi and Ruscheweyh differential operators, and obtain coefficient estimates and Fekete–Szegö inequalities for these new subclasses. The results presented in this paper improve the recent work of Kanas and Darwish (Appl Math Lett 23(7), 777–782, 2010).
Similar content being viewed by others
References
Abdel-Gawad, H.R., Thomas, D.K.: The Fekete-Szegö problem for strongly close-to-convex functions. Proc. Am. Math. Soc. 114, 345–349 (1992)
Al-Oboudi, F.M.: On univalent functions defined by a generalized Sãlãgean operator. Int. J. Math. Math. Sci. 27, 1429–1436 (2004)
Chonweerayoot, A., Thomas, D.K., Upakarnitikaset, W.: On the Fekete-Szegö theorem for close-to-convex functions. Publ. Inst. Math. (Beograd) (N.S.) 66, 18–26 (1992)
Darus, M., Thomas, D.K.: On the Fekete-Szegö theorem for close-to-convex functions. Math. Jpn. 44, 507–511 (1996)
Darus, M., Thomas, D.K.: On the Fekete-Szegö theorem for close-to-convex functions. Math. Jpn. 47, 125–132 (1998)
Deniz, E., Orhan, H.: The Fekete-Szegö problem for a generalized subclass of analytic functions. Kyungpook Math. J. 50, 37–47 (2010)
Deniz, E., Çağlar, M., Orhan, H.: The Fekete-Szegö problem for a class of analytic functions defined by Dziok-Srivastava operator. Kodai Math. J. 35, 439–462 (2012)
Fekete, M., Szegö, G.: Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 8, 85–89 (1933)
Kanas, S., Darwish, H.E.: Fekete-Szegö problem for starlike and convex functions of complex order. Appl. Math. Lett. 23(7), 777–782 (2010)
Keogh, F.R., Merkes, E.P.: A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 20, 8–12 (1969)
Koepf, W.: On the Fekete-Szegö problem for close-to-convex functions. Proc. Am. Math. Soc. 101, 89–95 (1987)
London, R.R.: Fekete-Szegö inequalities for close-to-convex functions. Proc. Am. Math. Soc. 117, 947–950 (1993)
Ma, W., Minda, D.: A unified treatment of some special classes of univalent functions. In: Li, Z., Ren, F., Yang, L., Zhang, S. (eds.) Proceeding of the International Conference on Complex Analysis, pp. 157–169. Int. Press, Boston (1994)
Nasr, M.A., Aouf, M.K.: Starlike function of complex order. J. Nat. Sci. Math. 25, 1–12 (1985)
Nasr, M.A., Aouf, M.K.: On convex functions of complex order. Mansoura Sci. Bull. 8, 565–582 (1982)
Orhan, H., Arıkan, H.: \(\left( P, Q\right) -\)Lucas polynomial coefficient inequalities of bi-univalent functions defined by the combination of both operators of Al-Oboudi and Ruscheweyh. Afr. Mat. (2020). https://doi.org/10.1007/s13370-020-00847-5
Orhan, H., Deniz, E., Çağlar, M.: Fekete-Szegö problem for certain subclasses of analytic functions. Demonstr. Math. 45(4), 835–846 (2012)
Orhan, H., Deniz, E., Răducanu, D.: The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains. Comput. Math. Appl. 59, 283–295 (2010)
Orhan, H., Răducanu, D.: Fekete-Szegö problem for strongly starlike functions associated with generalized hypergeometric functions. Math. Comput. Model. 50, 430–438 (2009)
Pfluger, A.: The Fekete-Szegö inequality by a variational method. Ann. Acad. Sci. Fenn. Ser. AI 10, 447–454 (1984)
Pommerenke, C.: Univalent functions. In: Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, Göttingen (1975)
Răducanu, D., Orhan, H.: Subclasses of analytic functions defined by a generalized differential operator. Int. J. Math. Anal. 4(1), 1–15 (2010)
Ruscheweyh, S.: New criteria for univalent functions. Proc. Am. Math. Soc. 49, 109–115 (1975)
Sălăgean, G.S.: Subclasses of univalent functions. In: Complex analysis–Proc. 5th Rom.-Finn. Semin., Bucharest 1981, Part 1, Lect. Notes Math. 1013, 362-372 (1983)
Wiatrowski, P.: The coefficients of a certain family of holomorphic functions. Zeszyty Nauk. Uniw. Lodz., Nauki. Mat. Przyrod. Ser. II 39, 75–85 (1971)
Acknowledgements
The authors would like to express their deepest appreciation to the reviewers for their valuable suggestions and comments to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Prof. Dr. Emin ÖZÇAĞ on the occasion of his 60th birthday.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Çağlar, M., Orhan, H. Fekete–Szegö problem for certain subclasses of analytic functions defined by the combination of differential operators. Bol. Soc. Mat. Mex. 27, 41 (2021). https://doi.org/10.1007/s40590-021-00349-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s40590-021-00349-9
Keywords
- Fekete–Szegö problem
- Analytic functions
- Starlike and convex functions of complex order
- Ruscheweyh and Al-Oboudi differential operator