Skip to main content
Log in

Cospherical classes in some iterated loop spaces on spheres

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

For a nice topological space X, working at the prime \(p=2\), we consider the ‘unstable Boardman map’ (homomorphism if \(k>0\))

$$\begin{aligned} b:\pi ^{m+k}\Sigma ^kX\simeq [X,\Omega ^kS^{m+k}]\longrightarrow \mathrm {Hom}_{\mathbb Z/2}(H^*\Omega ^kS^{m+k},H^*X) \end{aligned}$$

defined by \(b(f)=f^*\) where \(k\ge 0\) and \(m\ge 0\). We use classic maps, such as the Kahn–Priddy map, to provide examples of X so that b is nonzero in many dimensions. We also consider the case of \(X=\Omega ^lS^{n+l}\), with particular interest in the cases with \(0\le k<l\le +\infty\), and consider the problem of computing the image of

$$\begin{aligned} b:\pi ^{m}\Omega ^lS^{n+l}\simeq [\Omega ^lS^{n+l},S^{m}]\longrightarrow \mathrm {Hom}_{\mathbb Z/2}(H^*S^{m},H^*\Omega ^lS^{n+l}). \end{aligned}$$

Our results concern with the extreme values of k given by \(k=0,l\). For \(k=l\), a simple interpretation of well known facts about James-Hopf maps shows that the image of b when \(m=2n\) is always nontrivial; we have not completely determined the image of b in this case. For \(k=0\) we completely determine the image of b in the following cases: (1) \(m=n\) and \(l>0\) arbitrary; (2) \(m>n\) and \(l=1\). We observe that in most of the cases the image is trivial with the exceptions corresponding to the cases when either there is a (commutative) H-space structure on \(S^n\) or there is a Hopf invariant one element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, J.F.: On the non-existence of elements of Hopf invariant one. Ann. Math. 2(72), 20–104 (1960)

    Article  MathSciNet  Google Scholar 

  2. Adams, J.F.: Vector fields on spheres. Ann. Math. 2(75), 603–632 (1962)

    Article  MathSciNet  Google Scholar 

  3. Adams, J.F.: Stable Homotopy and Generalised Homology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1995). Reprint of the 1974 original

  4. Akhmetév, P.M., Eccles, P.J.: The relationship between framed bordism and skew-framed bordism. Bull. Lond. Math. Soc. 39(3), 473–481 (2007)

    Article  MathSciNet  Google Scholar 

  5. Arlettaz, D.: The exponent of the homotopy groups of Moore spectra and the stable Hurewicz homomorphism. Can. J. Math. 48(3), 483–495 (1996)

    Article  MathSciNet  Google Scholar 

  6. Arlettaz, D.: The generalized Boardman homomorphisms. Cent. Eur. J. Math. 2(1), 50–56 (2004)

    Article  MathSciNet  Google Scholar 

  7. Atiyah, M.F.: Thom complexes. Proc. Lond. Math. Soc. 3(11), 291–310 (1961)

    Article  MathSciNet  Google Scholar 

  8. Becker, J.C., Gottlieb, D.H.: The transfer map and fiber bundles. Topology 14, 1–12 (1975)

    Article  MathSciNet  Google Scholar 

  9. Becker, J.C., Schultz, R.E.: Equivariant function spaces and stable homotopy theory. I. Comment. Math. Helv. 49, 1–34 (1974)

    Article  MathSciNet  Google Scholar 

  10. Cohen, F.R.: A course in some aspects of classical homotopy theory. In: Algebraic Topology (Seattle, Wash., 1985), vol. 1286 of Lecture Notes in Math, pp. 1–92. Springer, Berlin (1987)

  11. Cohen, F.R., Wu, J.: A remark on the homotopy groups of \(\Sigma ^n{\bf R}{\rm P}^2\). In: The Čech Centennial (Boston, MA, 1993)

  12. Cohen, F.R., Lada, T.J., May, J.P.: The Homology of Iterated Loop Spaces. Lecture Notes in Mathematics. 533, VII. Springer, Berlin (1976)

  13. Curtis, E.B.: The Dyer–Lashof algebra and the \(\Lambda\)-algebra. Ill. J. Math. 19, 231–246 (1975)

    MathSciNet  MATH  Google Scholar 

  14. Eccles, P.J.: Codimension one immersions and the Kervaire invariant one problem. Math. Proc. Camb. Philos. Soc. 90, 483–493 (1981)

    Article  MathSciNet  Google Scholar 

  15. Eldon, D., Lashof, R.K.: Homology of iterated loop spaces. Am. J. Math. 84, 35–88 (1962)

    Article  MathSciNet  Google Scholar 

  16. Galatius, S.: Mod \(p\) homology of the stable mapping class group. Topology 43(5), 1105–1132 (2004)

    Article  MathSciNet  Google Scholar 

  17. Gray, B.: Homotopy theory. An introduction to algebraic topology. Pure and Applied Mathematics, 64. New York-San Francisco-London: Academic Press, a subsidiary of Harcourt Brace Jovanovich, Publishers. XIII. \$ 22.00 (1975)

  18. Harper, J.R.: Secondary Cohomology Operations. American Mathematical Society (AMS), Providence (2002)

    Book  Google Scholar 

  19. Hopkins, M.J.: Algebraic topology and modular forms. In: Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), pp. 291–317. Higher Ed. Press, Beijing (2002)

  20. Hopkins, M.J., Mahowald, M.: From elliptic curves to homotopy theory. In: Topological Modular Forms, vol. 201 of Math. Surveys Monogr., pp. 261–285. Amer. Math. Soc., Providence (2014)

  21. Hubbuck, J.R.: On homotopy commutative \(H\)-spaces. Topology 8, 119–126 (1969)

    Article  MathSciNet  Google Scholar 

  22. Hunton, J.R.: The Boardman homomorphism. In: The Čech Centennial, Boston (1993)

  23. James, I.M.: Multiplication on spheres. I. Proc. Am. Math. Soc. 8, 192–196 (1957)

    MathSciNet  MATH  Google Scholar 

  24. James, I.M.: Note on Stiefel manifolds. I. Bull. Lond. Math. Soc. 2, 199–203 (1970)

    Article  MathSciNet  Google Scholar 

  25. James, I.M.: Note on Stiefel manifolds. II. J. Lond. Math. Soc. 2(4), 109–117 (1971)

    Article  MathSciNet  Google Scholar 

  26. Kahn, D.S., Priddy, S.B.: Applications of the transfer to stable homotopy theory. Bull. Am. Math. Soc. 78, 981–987 (1972)

    Article  MathSciNet  Google Scholar 

  27. Kashiwabara, T., Zare, H.: Splitting Madsen–Tillmann spectra I. Twisted transfer maps. Bull. Belg. Math. Soc. Simon Stevin 25(2), 263–304 (2018)

    Article  MathSciNet  Google Scholar 

  28. Kudo, T., Araki, S.: On \(H_*(\Omega ^N(S^n);\;Z_2)\). Proc. Jpn. Acad. 32, 333–335 (1956)

    Google Scholar 

  29. Kudo, T., Shôrô, A.: Topology of \(H_n\)-spaces and \(H\)-squaring operations. Mem. Fac. Sci. Kyūsyū Univ. Ser. A. 10:85–120 (1956)

  30. Kuhn, N.J.: The homology of the James–Hopf maps. Ill. J. Math. 27, 315–333 (1983)

    MathSciNet  MATH  Google Scholar 

  31. Kuhn, N.J: Constructions of families of elements in the stable homotopy groups of spheres. In: Topology and representation theory (Evanston, IL, 1992), vol. 158 of Contemp. Math., pp. 135–155. Amer. Math. Soc., Providence (1994)

  32. Lam, K.Y., Randall, D.: Projectivity of \({\rm Im}\,J\), cospherical classes and geometric dimension. In: Stable and Unstable Homotopy (Toronto, ON, 1996)

  33. Mann, B.M., Miller, E.Y., Miller, H.R.: \(S^1\)-equivariant function spaces and characteristic classes. Trans. Am. Math. Soc. 295(1), 233–256 (1986)

    MATH  Google Scholar 

  34. Mathew, A.: Torsion exponents in stable homotopy and the Hurewicz homomorphism. Algebr. Geom. Topol. 16(2), 1025–1041 (2016)

    Article  MathSciNet  Google Scholar 

  35. Ravenel, D.C.: Complex Cobordism and Stable Homotopy Groups of Spheres, 2nd ed. AMS Chelsea Publishing, Providence (2004)

  36. Segal, G.: The stable homotopy of complex projective space. Q. J. Math. Oxford Ser. 2(24), 1–5 (1973)

    Article  MathSciNet  Google Scholar 

  37. Snaith, V.P.: Stable Homotopy Around the Arf–Kervaire Invariant. Birkhäuser, Basel (2009)

    Book  Google Scholar 

  38. Switzer, R.M.: Algebraic Topology—Homology and Homotopy. Reprint of the 1975 edition. Springer, Berlin, reprint of the 1975 edition edition (2002)

  39. Wellington, R.J.: The unstable Adams spectral sequence for free iterated loop spaces. Mem. Am. Math. Soc. 36(258), 225 (1982)

    MathSciNet  MATH  Google Scholar 

  40. West, R.W.: Some cohomotopy of projective space. Indiana Univ. Math. J. 20:807–827 (1970/1971)

  41. Whitehead, G.W.: Elements of Homotopy Theory. Graduate Texts in Mathematics. 61, XXI. Springer, Berlin (1978)

  42. Wu, J.: Homotopy theory of the suspensions of the projective plane. Mem. Amer. Math. Soc., 162(769):x+130 (2003)

  43. Zare, H.: On the Bott periodicity, \(J\)-homomorphisms, and \(H_{*}Q_{0}S^{ - k}\). J. Lond. Math. Soc. II. Ser. 84(1), 204–226 (2011)

    Article  Google Scholar 

  44. Zare, H.: Spherical classes in some finite loop spaces of spheres. Topol. Appl. 224, 1–18 (2017)

    Article  MathSciNet  Google Scholar 

  45. Zare, H.: Spherical classes in \(H_*(\Omega ^lS^{l+n};{Z}/2)\) for \(4 {\leqslant } l {\leqslant } 8\). Bol. Soc. Mat. Mex. (3) 25(2):399–426 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Zare.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interests.

Ethical standard

This research complies with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Some of the results in this paper were presented in Dalian workshop on algebraic topology, 2018. I am grateful to the organisers, specially Fengchun Lei, and Jie Wu for the invitation and the hospitality. I am also grateful to Mark Grant for some communications on Theorem 8.4 which resulted in a corrected version of the proof. This research was in part supported by a grant from IPM (No. 98470122).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, H. Cospherical classes in some iterated loop spaces on spheres. Bol. Soc. Mat. Mex. 27, 29 (2021). https://doi.org/10.1007/s40590-021-00308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-021-00308-4

Keywords

Mathematics Subject Classification

Navigation