Abstract
In this paper, we obtain bi-univalent theorems for certain classes defined by convolution and Bazilevič functions with bounded boundary rotation. Also, we will find coefficients bounds for \(\ \left| a_{2}\right| ,\ \left| a_{3}\right| \ \) and \(\ \left| 2a_{2}^{2}h_{2}^{2}-a_{3}h_{3}\right| \ \) for the new classes \({\mathsf {W}} _{\alpha ,b,k,\delta }(f*h)\mathsf {\ }\)and \({\mathsf {M}}_{b,k,\delta }(f*h)\mathsf {.}\)
This is a preview of subscription content, access via your institution.
References
- 1.
Al-Oboudi, F.M., Haidan, M.M.: Spirallike function of complex order. J. Nat. Geometry 19, 53–72 (2000)
- 2.
Altınkaya, S., Yalçın, S.: Coefficient problem for certain subclasses of bi-univalent functions defined by convolution. Math. Morav. 20(2), 15–21 (2016)
- 3.
Aouf, M.K.: A generalization of functions with real part bounded in the mean on the unit disc. Math. Japn. 33(2), 175–182 (1988)
- 4.
Aouf, M.K., Madian, S.M., Mostafa, A.O.: Bi-univalent properties for certain class of Bazilevič functions defined by convolution and with bounded boundary rotation. J. Egyptian Math. Soc. 27(11), 1–9 (2019)
- 5.
Bazilevič, I.E.: On a case of integrability in quadratures of the Lowner-Kufarev equation. Mat. Sb. 37(79), 471–476 (1955)
- 6.
Brannan, D.A., Taha, T.S.: On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 31(2), 70–77 (1986)
- 7.
Duren, P.L.: “Univalent Functions,” in Grundlehren der Mathematischen Wissenschaften Series, p. 259. Springer Verlag, New York (1983)
- 8.
El-Ashwah, R.M.: Subclasses of bi-univalent functions defined by convolution. J. Egypt. Math. Soc. 22, 348–351 (2014)
- 9.
Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24(9), 1569–1573 (2011)
- 10.
Goswami, P., Alkahtani, B. S., Bulboaca, T.: Estimate for initial Maclaurin coefficients of certain subclasses of bi-univalent functions, arXiv:1503.04644v1 [math.CV] March (2015)
- 11.
Hayami, T., Owa, S.: Coefficient bounds for bi-univalent functions. PanAm. Math. J. 22(4), 15–26 (2012)
- 12.
Motamednezhad, A., NosratiI, S., Zaker, S.: Bounds for initial Maclaurin coefficients of a subclass of bi-univalent functions associated with subordination. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(1), 125–135 (2019)
- 13.
Moulis, E.J.: Generalizations of the Robertson functions. Pac. J. Math. 81(1), 167–174 (1979)
- 14.
Nasr, M.A., Aouf, M.K.: Starlike functions of complex order. J. Nat. Sci. Math. 25, 1–12 (1985)
- 15.
Nasr, M.A., Aouf, M.K.: Functions of bounded boundary rotation of complex order. Rev. Roum. Math. Pure Appl. 32(7), 623–629 (1987)
- 16.
Noor, K., Arif, M., Muhammad, A.: Mapping properties of some classes of analytic functions under an integral operator. J. Math. Inequal. 4(4), 593–600 (2010)
- 17.
Orhan, H., Magesh, N., Balaji, V.K.: Certain classes of bi-univalent functions with bounded boundary variation. Tbili. Math. J. 4(10), 17–27 (2017)
- 18.
Padmanabh, K.S., Paravatham, R.: Properties of a class of functions with bounded boundary rotation. Ann. Polon. Math. 31(3), 842–853 (1975)
- 19.
Pinchuk, B.: Functions of bounded boundary rotation. Isr. J. Math. 10, 7–16 (1971)
- 20.
Prema, S., Keerthi, B.S.: Coefficient bounds for certain subclasses of analytic functions. J. Math. Anal. 4(1), 22–27 (2013)
- 21.
Robertson, M.S.: Variational formulas for several classes of analytic functions. Math. Z. 118, 311–319 (1976)
- 22.
Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23, 1188–1192 (2010)
- 23.
Taha, T. S.: Topics in univalent function theory, Ph. D. Thesis, University of London, (1981)
- 24.
Umarani, P.G., Aouf, M.K.: Linear combination of functions of bounded boundary rotation of order \(\alpha\). Tamkang J. Math. 20(1), 83–86 (1989)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aouf, M.K., Madian, S.M. Coefficient bounds for bi-univalent classes defined by Bazilevič functions and convolution. Bol. Soc. Mat. Mex. 26, 1045–1062 (2020). https://doi.org/10.1007/s40590-020-00304-0
Received:
Accepted:
Published:
Issue Date:
Keywords
- Bi-univalent
- Bazilevič functions
- Hadamard product
- Bounded boundary rotation
Mathematics Subject Classification
- 30C45