\(L^{p}\) local uncertainty principles for the Dunkl Gabor transform on \({\mathbb {R}}^{d}\)

Abstract

The purpose of this paper is to establish the \(L^{p}\) local uncertainty principles for the Dunkl Gabor transform on \({\mathbb {R}}^{d}\). These allow us to prove a couple of global uncertainty inequalities.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106, 180–183 (1985)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Salem, N.B., Nasr, A.R.: Heisenberg-type inequalities for the Weinstein operator. Integr. Transf. Sp. Funct. 26(9), 700–718 (2015)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    de Jeu, M.F.E.: The Dunkl transform. Invent. Math. 113, 147–162 (1993)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167–183 (1989)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Dunkl, C.F.: Hankel transforms associated to finite reflection groups. Contemp. Math. 138, 123–138 (1992)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Faris, W.G.: Inequalities and uncertainty inequalities. Math. Phys. 19, 461–466 (1978)

    Google Scholar 

  8. 8.

    Folland, G.-B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Gabor, D.: Theory of communication. Part 1: the analysis of information. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  10. 10.

    Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis. Springer, Berlin (1994)

    MATH  Google Scholar 

  11. 11.

    Kawazoe, T., Mejjaoli, H.: Uncertainty principles for the Dunkl transform. Hiroshima Math. J. 40(2), 241–268 (2010)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Ma, R.: Heisenberg inequalities for Jacobi transforms. J. Math. Anal. Appl. 332(1), 155–163 (2007)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Mejjaoli, H., Trimèche, K.: Spectrum of functions for the Dunkl transform on \({\mathbb{R}}^{d}\). Fract. Calculus Appl. Anal. 10(1), 19–38 (2007)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Mejjaoli, H., Sraieb, N.: Uncertainty principles for the continuous Dunkl Gabor transform and the Dunkl continuous Gabor transform. Mediterr. J. Math. 5, 443–466 (2008)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Mejjaoli, H.: Practical inversion formulas for the Dunkl-Gabor transform on \({\mathbb{R}}^{d}\). Integr. Transf. Sp. Funct. 23(12), 875–890 (2012)

    MATH  Google Scholar 

  16. 16.

    Mejjaoli, H., Sraieb, N., Trimèche, K.: Inversion theorem and quantitative uncertainty principles for the Dunkl Gabor transform on \({\mathbb{R}}^{d}\). J. Pseudo-Differ. Oper. Appl. 10, 883–913 (2019)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Price, J.F.: Inequalities and local uncertainty principles. Math. Phys. 24, 1711–1714 (1978)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Price, J.F.: Sharp local uncertainty principles. Stud. Math. 85, 37–45 (1987)

    MATH  Google Scholar 

  19. 19.

    Price, J.F., Sitaram, A.: Local uncertainty inequalities for locally compact groups. Trans. Am. Math. Soc. 308, 105–114 (1988)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Rösler, M.: Generalized Hermite polynomials and the heat equation for Dunkl operators. Commun. Math. Phys. 192, 519–542 (1998)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Rösler, M., Voit, M.: Markov processes related with Dunkl operators. Adv. Appl. Math. 21(4), 575–643 (1998)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Rösler, M.: A positive radial product formula for the Dunkl kernel. Trans. Am. Math. Soc. 355, 2413–2438 (2003)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty I. Bell. Syst. Tech. J. 40, 43–63 (1961)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty IV: extensions to many dimensions, generalized prolate spheroidal functions. Bell. Syst. Tech. J. 43, 3009–3057 (1964)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Thangavelu, S., Xu, Y.: Convolution operator and maximal functions for Dunkl transform. J. Anal. Math. 97, 25–56 (2005)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Trimèche, K.: Paley-Wiener theorems for Dunkl transform and Dunkl translation operators. Integr. Transf. Sp. Funct. 13, 17–38 (2002)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Trimèche, K.: Inversion of the Dunkl intertwining operator and its dual using Dunkl wavelets. Rocky Mt. J. Math. 32(2), 889–918 (2002)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Yakubovich, S.B.: Uncertainty principles for the Kontorovich-Lebedev transform. Math. Model. Anal. 13(2), 289–302 (2008)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge Mathematical Library, Cambridge (1995)

    MATH  Google Scholar 

  30. 30.

    Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous Gabor transform. Doc. Math. J. DMV (electronic) 5, 201–226 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to the referees for providing constructive comments and helps in improving the contents of this article. The first author thanks the professor M.W. Wong for his help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hatem Mejjaoli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mejjaoli, H., Sraieb, N. & Trimèche, K. \(L^{p}\) local uncertainty principles for the Dunkl Gabor transform on \({\mathbb {R}}^{d}\). Bol. Soc. Mat. Mex. 26, 1163–1182 (2020). https://doi.org/10.1007/s40590-020-00297-w

Download citation

Keywords

  • Dunkl Gabor transform
  • Local uncertainty principles

Mathematics Subject Classification

  • 42B10
  • 44A05