Algebraic lattices of solvably saturated formations and their applications


In each group G, we select a system of subgroups \(\tau (G)\) and say that \(\tau\) is a subgroup functor if \(G \in \tau (G)\) for every group G, and for every epimorphism \(\varphi : A \rightarrow B\) and any \(H \in \tau (A)\) and \(T \in \tau (B)\), we have \(H^\varphi \in \tau (B)\) and \(T^{\varphi ^{-1}} \in \tau (A)\). We consider only subgroup functors \(\tau\) such that for any group G all subgroups of \(\tau (G)\) are subnormal in G. For any set of groups \({\mathfrak {X}}\), the symbol \({s}_\tau ({\mathfrak {X}})\) denotes the set of groups H such that \(H \in \tau (G)\) for some group \(G \in {\mathfrak {X}}\). A formation \({\mathfrak {F}}\) is \(\tau\)-closed if \({s}_\tau ({\mathfrak {F}}) = {\mathfrak {F}}\). The Frattini subgroup \({\varPhi }(G)\) of a group G is the intersection of all maximal subgroups of G. A formation \({\mathfrak {F}}\) is said to be solvably saturated if it contains each group G with \(G/{\varPhi }(N) \in {\mathfrak {F}}\) for some solvable normal subgroup N of G. Composition formations are precisely solvably saturated formations. It is shown that the lattice of all \(\tau\)-closed totally composition formations is algebraic.

This is a preview of subscription content, access via your institution.


  1. 1.

    Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.: Handbook of Logic in Computer Science. Vol. 3. Semantic Structures. Clarendon Press, Oxford (1994)

    MATH  Google Scholar 

  2. 2.

    Al Tahan, M., Davvaz, B.: A new relationship between intuitionistic fuzzy sets and genetics. J. Classif. (2018).

    MATH  Google Scholar 

  3. 3.

    Ballester-Bolinches, A., Ezquerro, L.M.: Classes of Finite Groups. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  4. 4.

    Ballester-Bolinches, A., Cosme-Llópez, E., Kamornikov, S.F.: On subgroup functors of finite soluble groups. Sci. China Math. 60(3), 439–448 (2017)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Ballester-Bolinches, A., Pin, J.-É., Soler-Escrivà, X.: Formations of finite monoids and formal languages: Eilenberg’s variety theorem revisited. Forum Math. 26(6), 1737–1761 (2014)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Ballester-Bolinches, A., Pin, J.-É., Soler-Escrivà, X.: Languages associated with saturated formations of groups. Forum Math. 27(3), 1471–1505 (2015)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Bouchachia, A., Lughofer, E., Sanchez, D.: Online fuzzy machine learning and data mining. Inf. Sci. 220, 1–602 (2013)

    Google Scholar 

  8. 8.

    Bozapalidis, S., Louscou-Bozapalidou, O.: On the recognizability of Fuzzy languages I. Fuzzy Sets Syst. 157(17), 2394–2402 (2006)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Chi, Zh, Safonov, V.G., Skiba, A.N.: On \(n\)-multiply \(\sigma\)-local formations of finite groups. Commun. Algebra 47(3), 957–968 (2019)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Davvaz, B., Cristea, I.: Fuzzy algebraic hyperstructures. Stud. Fuzziness Soft Comput. 321, 20 (2015)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Doerk, K., Hawkes, T.: Finite Soluble Groups, De Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter, Berlin (1992)

    MATH  Google Scholar 

  12. 12.

    Dixon, M.R.: Sylow Theory, Formations, and Fitting Classes in Locally Finite Groups, vol. 2. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  13. 13.

    Gaschütz, W.: Zur Theorie der endlichen auflösbaren Gruppen. Math. Z. 80(4), 300–305 (1963)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Grätzer, G.: General Lattice Theory. Academic Press, London (1978)

    MATH  Google Scholar 

  15. 15.

    Guo, W.: Structure Theory for Canonical Classes of Finite Groups, p. 359. Springer, Berlin (2015)

    MATH  Google Scholar 

  16. 16.

    Hüllermeier, E.: Fuzzy methods in machine learning and data mining: status and prospects. Fuzzy Sets Syst. 156(3), 387–406 (2005)

    MathSciNet  Google Scholar 

  17. 17.

    Ignjatović, J., Ćirić, M., Bogdanović, S., Petković, T.: Myhill–Nerode type theory for fuzzy languages and automata. Fuzzy Sets Syst. 161(9), 1288–1324 (2010)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Klaua, D.: Über einen Ansatz zur mehrwertigen Mengenlehre. Monatsb. Deutsch. Akad. Wiss. Berlin 7, 859–876 (1965). (in German)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Kamornikov, S.F., Selkin, M.V.: Subgroup Functors and Classes of Finite Groups, p. 254. Belaruskaya Navuka, Minsk (2003). (in Russian)

    Google Scholar 

  20. 20.

    Marty, F.: Sur une generalization de la notion de groupe, 8th Congress Math, pp. 45–49. Stockholm, Scandenaves (1934)

    Google Scholar 

  21. 21.

    Petković, T.: Varieties of fuzzy languages. In : Proceedings First International Conference on Algebraic Informatics, Aristotle University of Thessaloniki, Thessaloniki, pp. 197–205 (2005)

  22. 22.

    Neumann, H.: Varieties of Groups. Springer, Berlin (2012)

    MATH  Google Scholar 

  23. 23.

    Rahonis, G.: Fuzzy languages. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science, pp. 481–517. Springer, Berlin (2009)

    Google Scholar 

  24. 24.

    Reifferscheid, S.: A note on subgroup-closed Fitting classes of finite soluble groups. J. Group Theory 6(3), 331–345 (2003)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Safonov, V.G.: The property of being algebraic for the lattice of all \(\tau\)-closed totally saturated formations. Algebra Logic 45(5), 353–356 (2006)

    MathSciNet  Google Scholar 

  26. 26.

    Safonov, V.G.: Characterization of the soluble one-generated totally saturated formations of finite groups. Siber. Math. J. 48(1), 150–155 (2007)

    Google Scholar 

  27. 27.

    Scherbina, V.V., Safonov, V.G.: On some properties of the lattice of partially totally saturated formations of finite groups. Belgorod State Univ. Sci. Bull. Math. Phys. 51(2), 227–244 (2019). (in Russian)

    Google Scholar 

  28. 28.

    Shabalina, I.P.: Algebraic lattices of \(\tau\)-closed \(n\)-multiply \(\omega\)-local formations. Izv. Gomel. Gos. Univ. Im. F. Skoriny. Vopr. Algebry 185(14), 59–67 (2002). (in Russian)

    MATH  Google Scholar 

  29. 29.

    Shemetkov, L.A., Skiba, A.N.: Formations of Algebraic Systems. Sovremennaya Algebra, p. 256. Nauka, Moscow (1989). (in Russian)

    MATH  Google Scholar 

  30. 30.

    Skiba, A.N.: Algebra of Formations, p. 240. Belaruskaya Navuka, Minsk (1997). (in Russian)

    MATH  Google Scholar 

  31. 31.

    Skiba, A.N., Shemetkov, L.A.: Multiply \(\mathfrak{L}\)-composition formations of finite groups. Ukrain. Math. J. 52(6), 898–913 (2000)

    MathSciNet  Google Scholar 

  32. 32.

    Skiba, A.N., Vorob’ev, N.N.: On the lattices of saturated and solubly saturated formations of finite groups. Southeast Asian Bull. Math. 37, 771–780 (2013)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Tsarev, A.: Algebraic lattices of partially saturated formations of finite groups. Afr. Mat. (2020). (In press)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Tsarev, A.: The lattice properties of \({\mathfrak{X}}\)-local formations. J. Algebra Appl. (2020).

    Google Scholar 

  35. 35.

    Tsarev, A.: On classes of finite rings. Rev. Unión Mat. Argent. 61, 1 (2020). In press

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Tsarev, A.: Inductive lattices of totally composition formations. Rev. Colomb. Mat. 52(2), 161–169 (2018)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Tsarev, A.: Laws of the lattices of foliated formations of \(T\)-groups. Rend. Circ. Mat. Palermo II. Ser. 68(3), 433–440 (2019)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Tsarev, A.: On the lattice of all totally composition formations of finite groups. Ricerche Mat. 68(2), 693–698 (2019)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Tsarev, A.: Formations of finite monoids and their applications: formations of languages and \(\tau\)-closed saturated formations of finite groups. Ann. Univ. Ferrara (2019).

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Tsarev, A.: Laws of the lattices of \(\sigma\)-local formations of finite groups. Mediterr. J. Math. 17, 3 (2020). (in press)

    MathSciNet  Google Scholar 

  41. 41.

    Tsarev, A.A., Vorob’ev, N.N.: On a question of the theory of partially composition formations. Algebra Colloq. 21(3), 437–447 (2014)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Vorob’ev, N.N.: Algebra of Classes of Finite Groups, p. 322. P.M. Masherov Vitebsk State University, Vitebsk (2012). (in Russian)

    Google Scholar 

  43. 43.

    Vorob’ev, N.N., Tsarev, A.A.: On the modularity of a lattice of \(\tau\)-closed \(n\)-multiply \(\omega\)-composition formations. Ukrain. Math. J. 62(4), 453–463 (2010)

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Vorob’ev, N.N., Skiba, A.N.: On the distributivity of the lattice of solvable totally local Fitting classes. Math. Notes 67(5), 563–571 (2000). translation from Mat. Zametki 67(5), 662–673 (2000) (in Russian)

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Vorob’ev, N.N.: On one question of the theory of local classes of finite groups. Probl. Algebra Proc. F. Scorina Gomel State Univ. Gomel. 14, 132–140 (1999)

    Google Scholar 

  46. 46.

    Wee, W.G.: On generalization of adaptive algorithm and applications of the fuzzy sets concept to pattern classification. PhD dissertation, Purdue University, Lafayette (1967)

  47. 47.

    Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

    MATH  Google Scholar 

Download references


We thank the anonymous referee for carefully reading the manuscript.

Author information



Corresponding author

Correspondence to Aleksandr Tsarev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been supported by the Russian Science Foundation under Grant 18-71-10007.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsarev, A., Kukharev, A. Algebraic lattices of solvably saturated formations and their applications. Bol. Soc. Mat. Mex. 26, 1003–1014 (2020).

Download citation


  • Finite group
  • Subgroup functor
  • Formation of groups
  • Satellite of formation
  • Totally composition formation
  • Algebraic lattice of formations
  • Formal language
  • Hypergroup

Mathematics Subject Classification

  • Primary 20F17
  • Secondary 20D10
  • 43A62
  • 20M35