On pseudo residuated skew lattices


In this paper, pseudo residuated skew lattices are defined as a non-commutative generalization of residuated skew lattices and their properties are investigated. It is shown that the class of all conormal pseudo residuated skew lattices forms a variety under some conditions. Dense, regular and strong elements are studied in a pseudo residuated skew lattice and the relationships between them are discussed. We define and investigate different classes of pseudo residuated skew lattices and show that any pseudo residuated skew chain with element 0 is local and also, any locally finite pseudo residuated skew lattice is local. It is shown that any strong pseudo residuated skew lattice is good and any locally finite pseudo residuated skew lattice is good under an extra condition too.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bignall, R.J., Leech, J.: Skew Boolean algebras and discriminator varieties. Algebra Univ. 33, 387–398 (1995)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Borumand Saeid, A., Koohnavard, R.: On residuated skew lattices. Ann. St. Univ. Ovidius Constanta 27(1), 245–268 (2019)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Ciungu, L.C.: Classes of residuated lattices. Ann. Univ Craiova Math. Comput. Sci 33, 189–207 (2006)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Cvetko-Vah, K., Kinyon, M., Leech, J., Spinks, M.: Cancellation in skew lattices. Order 28, 9–32 (2011)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Cvetko-Vah, K.: On skew Heyting algebra. Ars. Math. Contemp. 12, 37–50 (2017)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Di Nola, A., Georgescu, G., Iorgulescu, A.: Pseudo BL-algebras: part I. Multiple Valued Log. 8(5/6), 673–716 (2002)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Di Nola, A., Georgescu, G., Iorgulescu, A.: Pseudo BL-algebras: part II. Multiple Valued Log. 8, 715–750 (2002)

    MATH  Google Scholar 

  8. 8.

    Georgescu, G., Iorgulescu, A.: Pseudo BL-algebras: a non-commutative extension of BL-algebras. In: The Fifth Inter Conf FSTA 2000, Slovakia, Feb, 90-92 (2000)

  9. 9.

    Haveshki, M., Borumand Saeid, A., Eslami, E.: Some types of filters in BL-algebras. Soft Comput. 10(8), 657–664 (2006)

    MATH  Google Scholar 

  10. 10.

    Jordan, P.: Under nichtkommutative verbande. Arch. Math. 2, 56–59 (1949)

    MATH  Google Scholar 

  11. 11.

    Kadji, A., Lele, C., Tonga, M.: Some classes of pseudo residuated lattices. Afr. Math. 27, 1147–1178 (2016)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Koohnavard, R., Borumand Saeid, A.: (Skew) filters in residuated skew lattices. Sci. Ann. Comput. Sci. 28(1), 115–140 (2018)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Koohnavard, R., Borumand Saeid, A.: (Skew) filters in residuated skew lattices: part II. Honam Math. J. 40(3), 401–431 (2018)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Leech, J.: Normal skew lattices. Semigr. Forum 44, 1–8 (1992)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Leech, J.: Skew lattices, Unpublished Book

  16. 16.

    Leech, J.: Skew lattices in rings. Algebra Univ. 26, 48–72 (1989)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Muresan, C.: Dense elements and classes of residuated lattices. Bull. Math. Soc. Sci. Math. Roum. 53(101), 11–24 (2010). (1)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Piciu, D.: Algebras of Fuzzy Logic. Univ Craiova Publ House, Craiova (2007)

    Google Scholar 

  19. 19.

    Pita Costa, J.: On ideals of a skew lattice. Gen. Algebra. Appl. 32, 5–21 (2012)

    MathSciNet  MATH  Google Scholar 

Download references


The authors are extremely grateful to the referees for giving them many valuable comments and helpful suggestions which help to improve the presentation of this paper.

Author information



Corresponding author

Correspondence to A. Borumand Saeid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koohnavard, R., Borumand Saeid, A. On pseudo residuated skew lattices. Bol. Soc. Mat. Mex. 26, 775–794 (2020). https://doi.org/10.1007/s40590-020-00289-w

Download citation


  • (Local
  • Locally finite
  • Integral
  • good
  • Strong) pseudo residuated skew lattice
  • Normal filter
  • Dense
  • Regular elements

Mathematics Subject Classification

  • 03G10
  • 06A75
  • 06B20
  • 03B75