Models of simply-connected trivalent 2-dimensional stratifolds

Abstract

Trivalent 2-stratifolds are a generalization of 2-manifolds in that there are disjoint simple closed curves where three sheets meet. We develop operations on their associated labeled graphs that will effectively construct from a single vertex all graphs that represent simply connected trivalent 2-stratifolds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Aschenbrenner, M., Friedl, S., Wilton, H.: \(3\)-manifold groups, European Math. Soc., EMS Series of Lectures in Mathematics Vol. 20 (2015)

  2. 2.

    Bendich, P., Wang, B., Mukherjee, S.: Towards Stratification Learning through Homology Inference. arXiv:1008.3572v1 [math.GT] (2010)

  3. 3.

    Bendich, P., Gasparovic, E., Tralie, C.J., Harer, J.: Scaffoldings and spines: organizing high-dimensional data using cover trees, local principal component analysis, and persistent homology. Res. Comput. Topol. 1, 93–114 (2018)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Carter, J.S.: Reidemeister/Roseman-type moves to embedded foams in 4-dimensional space, in “New Ideas in Low Dimensional Topology”. Ser. Knots Everything 56, 1–30 (2015)

    Article  Google Scholar 

  5. 5.

    Gómez-Larrañaga, J.C., González-Acuña, F., Heil, Wolfgang: Categorical group invariants of 3-manifolds. Manus. Math. 145, 433–448 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Gómez-Larrañaga, J.C., González-Acuña, F., Heil, Wolfgang: \(2\)-stratifolds, in “A Mathematical Tribute to José María Montesinos Amilibia”. Universidad Complutense de Madrid 395–405 (2016)

  7. 7.

    Gómez-Larrañaga, J.C., González-Acuña, F., Heil, Wolfgang: \(2\)-dimensional stratifolds homotopy equivalent to \(S^2\). Topol. Appl. 209, 56–62 (2016)

    Article  Google Scholar 

  8. 8.

    Gómez-Larrañaga, J.C., González-Acuña, F., Heil, Wolfgang: Classification of simply-connected Trivalent \(2\)-dimensional Stratifolds. Top. Proc. 52, 329–340 (2018)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Gómez-Larrañaga, J.C., González-Acuña, F.,  Heil, Wolfgang: \(2\)-stratifold groups have solvable Word Problem, Revista de la Real Academia de Ciencias Exactas. Fisicas y Naturales. Serie A. Matemáticas 803–810 (2018)

  10. 10.

    Gómez-Larrañaga, J.C., González-Acuña, F., Heil, Wolfgang: \(2\)-stratifold spines of closed \(3\)-manifolds. Osaka J. Math. 57 (in print, 2020). arXiv:1707.05663

  11. 11.

    Hagberg, A., Schult, Daniel A., Swart, Pieter J.: Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux, V (Ed.) SciPy 2008: 7th Python in Science Conference, Pasadena, USA, pp. 1–78 (2008)

  12. 12.

    Hernández-Esparza, Yair.A., https://github.com/yair-hdz/stratifolds (2019)

  13. 13.

    Khovanov, M.L.: sl(3) link homology. Algebr. Geom. Topol. 4, 1045–1081 (2004)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Lum, P., Singh, G., Carlsson, J., Lehman, A., Ishkhanov, T., Vejdemo-Johansson, M., Alagappan, M., Carlsson, G.: Extracting insights from the shape of complex data using topology. Nat. Sci. Rep. 3, 12–36 (2013)

    Google Scholar 

  15. 15.

    Matveev, S.V.: Distributive groupoids in knot theory (Russian) Mat. Sb. (N.S.) 119 (161) no. 1, 78–88, 160 (1982)

  16. 16.

    Neumann, W.: A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves. Trans. Am. Math. Soc. 268, 299–344 (1981)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Piergallini, R.: Standard moves for standard polyhedra and spines. In: Third National Conference on Topology Trieste, 1986. Rend. Circ. Mat. Palermo (2) Suppl. No. 18, pp. 391–414 (1988)

Download references

Acknowledgements

J. C. Gómez-Larrañaga would like to thank LAISLA and INRIA Saclay for financial support and INRIA Saclay and IST Austria for their hospitality. The authors would like to thank the referees for many helpful suggestions that resulted in a more readable paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Heil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gómez-Larrañaga, J.C., González-Acuña, F. & Heil, W. Models of simply-connected trivalent 2-dimensional stratifolds. Bol. Soc. Mat. Mex. 26, 1301–1312 (2020). https://doi.org/10.1007/s40590-020-00283-2

Download citation

Keywords

  • Stratifold
  • Simply connected
  • Trivalent graph

Mathematics Subject Classification

  • 57M20
  • 57M05
  • 57M15