On harmonicity and Miao–Tam critical metrics in a perfect fluid spacetime


The curvature properties of a perfect fluid spacetime have been studied when the Riemann curvature, the projective curvature, the concircular curvature, the conformal curvature and the conharmonic curvature tensors are, respectively, harmonic. In the flatness case, if the velocity vector of the fluid is torse-forming, we can completely characterize it. Also, we study the consequences of the existence of \(\eta \)-Einstein, \(\eta \)-Ricci and \(\eta \)-Yamabe solitons in perfect fluid spacetime satisfying Miao–Tam critical metric condition.

This is a preview of subscription content, access via your institution.


  1. 1.

    Adati, A., Miyazawa, T.: On a Riemannian Space with recurrent conformal curvature. Tensor. N.S. 18, 355–342 (1967)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Ahsan, Z.: Tensors: Mathematics of Differential Geometry and Relativity. PHI Learning Pvt. Ltd., New Delhi (2018)

    Google Scholar 

  3. 3.

    Ahsan, Z., Ali, M.: Curvature tensor for the spacetime of general relativity. Int. J. Geom. Methods. Modern Phys. 14(5), 1750078 (2017)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Ahsan, Z., Husain, S.I.: On \((F, g, r, S)\)-structure in general relativity. Indian J. Pure Appl. Math. 11(6), 819–827 (1980)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Ahsan, Z., Siddiqui, S.A.: Concircular curvature tensor and fluid spacetimes. Int. J. Theor. Phys. 48(11), 3202–3212 (2009)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ahsan, Z., Siddiqui, S.A.: On the divergence of the space-matter tensor in general relativity. Adv. Stud. Theor. Phys. 4(11), 543–556 (2010)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Chaki, M.C., Maity, R.K.: On quasi-Einstein manifolds. Publ. Math. Debrecen 57, 297–306 (2000)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Mallick, S., Zhao, P., De, U.C.: Spacetimes admitting quasi-conformal curvature tensor. Bull. Iran. Math. Soc. 42(6), 1535–1546 (2016)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Mishra, R.S.: A Course in Tensors with Applications to Riemannian Geometry, 1st edn. Pothishala Private, Allahabad (1965)

    Google Scholar 

  10. 10.

    Miao, P., Tam, L.-F.: On the volume functional of compact manifolds with boundary with constant scalar curvature. Calc. Var. PDE. 36, 141–171 (2009)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Pokhariyal, G.P., Mishra, R.S.: Curvature tensors and their relativistics significance. Yokohama Math. J. 18, 105–108 (1970)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Siddiqui, S.A., Ahsan, Z.: Conharmonic curvature tensor and the spacetime of general relativity. Diff. Geom. Dyn. Sys. 12, 213–220 (2010)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Yano, K.: Concircular geometry I. Concircular transformations. Proc. Imp. Acad. Tokyo 16, 195–200 (1940)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Yano, K., Bochner, S.: Curvature and Betti numbers. Ann. Math. Second Ser. 49(2), 379–390 (1948)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Adara M. Blaga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blaga, A.M. On harmonicity and Miao–Tam critical metrics in a perfect fluid spacetime. Bol. Soc. Mat. Mex. 26, 1289–1299 (2020). https://doi.org/10.1007/s40590-020-00281-4

Download citation


  • Curvature tensors
  • Perfect fluid
  • Lorentz space
  • Miao–Tam critical metric
  • Geometrical solitons

Mathematics Subject Classification

  • 53B50
  • 53C44
  • 53C50
  • 83C02