On a paper of Dressler and Van de Lune


If \(z\in {\mathbb {C}}\) and \(1\le n\) is a natural number then

$$\begin{aligned} \sum _{d_1 d_2 =n} (1-z^{p_1})\cdots (1-z^{p_m}) z^{q_1 e_{1}+\cdots +q_i e_{i} }=1, \end{aligned}$$

where \(d_1=p_1^{r_1}\dots p_m^{r_m }\), \(d_2=q_1^{e_1}\dots q_i^{e_i }\) are the prime decompositions of \(d_1, d_2\). This is one of the identities involving arithmetic functions that we prove using ideas from the paper of Dressler and van de Lune [3].

This is a preview of subscription content, access via your institution.


  1. 1.

    Apostol, T.: Introduction to Analytic Number Theory. Springer, New York (1976)

    Book  Google Scholar 

  2. 2.

    Apostol, T.: Modular Functions and Dirichlet Series in Number Theory. Springer, New York (1976)

    Book  Google Scholar 

  3. 3.

    Dressler, R.E., van de Lune, J.: Some remarks concerning the number theoretic functions \(\omega (n)\) and \(\Omega (n)\). Proc. Am. Math. Soc. 41(2), 403–406 (1973)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Oxford Univ. Press, New York (1986). (revised by D. R. Heath-Brown)

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. A. Panzone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panzone, P.A. On a paper of Dressler and Van de Lune. Bol. Soc. Mat. Mex. 26, 831–839 (2020). https://doi.org/10.1007/s40590-020-00278-z

Download citation


  • Arithmetic functions
  • Identities
  • Zeta function

Mathematics Subject Classification

  • 11A25
  • 11MXX