Skip to main content
Log in

On the (pq)-Lucas polynomial coefficient bounds of the bi-univalent function class \(\sigma \)

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

The idea of the present paper stems from the work of Lee and Aşcı (J Appl Math 2012:1–18, 2012). We want to remark explicitly that, in our article, by using the (pq)-Lucas polynomials, our methodology builds a bridge, to our knowledge not previously well known, between the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined through the (pq)-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain Fekete–Szegö problem for this new function class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altınkaya, Ş., Yalçın, S.: Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C. R. Acad. Sci. Paris, Ser. I 353, 1075–1080 (2015)

    Article  MathSciNet  Google Scholar 

  2. Brannan, D.A., Clunie, J.: Aspects of contemporary complex analysis. In: Proceedings of the NATO Advanced Study Institute Held at University of Durham, New York (1979)

  3. Brannan, D.A., Taha, T.S.: On some classes of bi-univalent functions. Stud. Univ. Babeş Bolyai Math. 31, 70–77 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Duren, P.L.: Univalent Functions. Grundlehren der Mathematischen Wissenschaften, vol. 259. Springer, Berlin (1983)

    Google Scholar 

  5. Filipponi, P., Horadam, A.F.: Derivative sequences of Fibonacci and Lucas polynomials. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds.) Applications of Fibonacci Numbers, vol. 4, pp. 99–108. Kluwer Academic Publishers, Dordrecht (1991)

    Chapter  Google Scholar 

  6. Filipponi, P., Horadam, A.F.: Second derivative sequences of Fibonacci and Lucas polynomials. Fibonacci Q. 31, 194–204 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Lee, G.Y., Aşcı, M.: Some properties of the $(p, q) $-Fibonacci and $(p, q)$-Lucas polynomials. J. Appl. Math. 2012, 1–18 (2012). (Article ID 264842)

    MathSciNet  MATH  Google Scholar 

  8. Lewin, M.: On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 18, 63–68 (1967)

    Article  MathSciNet  Google Scholar 

  9. Lupas, A.: A guide of Fibonacci and Lucas polynomials. Octag. Math. Mag. 7, 2–12 (1999)

    MathSciNet  Google Scholar 

  10. Ma, R., Zhang, W.: Several identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q. 45, 164–170 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Netanyahu, E.: The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $\left|z\right|<1$. Arch. Ration. Mech. Anal. 32, 100–112 (1969)

    Article  MathSciNet  Google Scholar 

  12. Özkoç, A., Porsuk, A.: A note for the $(p, q)$-Fibonacci and Lucas quarternion polynomials. Konuralp J. Math. 5, 36–46 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Srivastava, H.M., Murugusundaramoorthy, G., Magesh, N.: Certain subclasses of bi-univalent functions associated with the Hohlov operator. Glob. J. Math. Anal. 1, 67–73 (2013)

    Google Scholar 

  14. Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23, 1188–1192 (2010)

    Article  MathSciNet  Google Scholar 

  15. Vellucci, P., Bersani, A.M.: The class of Lucas–Lehmer polynomials. Rend. Mat. Appl. serie VII 37, 43–62 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Vellucci, P., Bersani, A.M.: Orthogonal polynomials and Riesz bases applied to the solution of Love’s equation. Math. Mech. Complex Syst. 4, 55–66 (2016)

    Article  MathSciNet  Google Scholar 

  17. Vellucci, P., Bersani, A.M.: Ordering of nested square roots of 2 according to the Gray code. Ramanujan J. 45, 197–210 (2018)

    Article  MathSciNet  Google Scholar 

  18. Wang, T., Zhang, W.: Some identities involving Fibonacci, Lucas polynomials and their applications. Bull. Math. Soc. Sci. Math. Roum. 55, 95–103 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Zireh, A., Analouei Adegani, E., Bulut, S.: Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination. Bull. Belg. Math. Soc. Simon Stevin 23, 487–504 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şahsene Altınkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altınkaya, Ş., Yalçın, S. On the (pq)-Lucas polynomial coefficient bounds of the bi-univalent function class \(\sigma \). Bol. Soc. Mat. Mex. 25, 567–575 (2019). https://doi.org/10.1007/s40590-018-0212-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-018-0212-z

Keywords

Mathematics Subject Classification

Navigation