Quantitative uncertainty principles for the Weinstein transform

  • A. Abouelaz
  • A. Achak
  • R. Daher
  • N. Safouane
Original Article


The Weinstein transform satisfies some uncertainty principles in a similar way to the Euclidean Fourier transform. Donoho–Stark’s uncertainty principle is obtained for the Weinstein transform.


Weinstein transform Donoho–Stark’s uncertainty principle 

Mathematics Subject Classification



  1. 1.
    Achak, A., Daher, R.J.: Benedicks–Amrein–Berthier type theorem related to Opdam–Cherednik transform. J. Pseudo-Differ. Oper. Appl. (2017).
  2. 2.
    Achak, A., Daher, R.: Benedicks-Amrein-Berthier type theorem related to Weinstein transform. Anal. Math. 43(4), 511–521 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Achak, A., Daher, R., Lahlali, H.: Beurling’s theorem for Bessel-Struve transform. C.R. Math. 354(1), 81–85 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benedicks, M.: On Fourier transforms of function supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106, 180–183 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beurling, A.: The Collect Works of Arne Beurling. Birkhauser, Boston (1989)zbMATHGoogle Scholar
  6. 6.
    Cowling, M.G., Price, J.F.: Generalizations of Heisenberg’s inequality. In: Mauceri, G., Ricci, F., Weiss, G. (eds.) Harmonic Analysis. Lecture Notes in Mathematics, vol. 992, pp. 443–449. Springer, Berlin (1983)CrossRefGoogle Scholar
  7. 7.
    Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ghazwani, J., Soltani, F.: A variation of the Lp uncertainty principles for the Fourier transform. In: Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, vol. 42, no. 1, pp. 10–24 (2016)Google Scholar
  10. 10.
    Hardy, G.H.: A theorem concerning Fourier transform. J. Lond. Math. Soc. 8, 227–231 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mejjaoli, H., Salhi, M.: Uncertainty principles for the Weinstein transform. Czech. Math. J. 61(136), 941–974 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Thangavelu, S.: An Introduction to the Uncertainty Principle. Progress in Mathematics, vol. 217. Birkhäuser, Basel (2004)Google Scholar

Copyright information

© Sociedad Matemática Mexicana 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Sciences Aïn ChockUniversity of Hassan IICasablancaMorocco

Personalised recommendations