Improved approximation on Durrmeyer-type operators

  • Vijay Gupta
  • Danyal Soybaş
  • Gancho Tachev
Original Article


In the present paper, we consider the Durrmeyer-type operators, some of which reproduce the linear functions, while some the constant functions only. We observe that the order of approximation for these operators is \(O(n^{-1})\); here, we consider the linear combinations of such operators and study some approximation properties for these operators. Our results essentially improve the order of approximation.


Baskakov–Durrmeyer operators Linear combinations Divided differences Pochhammer symbol Lagrange interpolation 

Mathematics Subject Classification

41A25 41A30 


  1. 1.
    Abel, U., Ivan, M.: On a generalization of an approximation operator defined by A. Lupaş. Gen. Math. 15(1), 21–34 (2007)MathSciNetMATHGoogle Scholar
  2. 2.
    De Vore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)Google Scholar
  3. 3.
    Finta, Z.: On converse approximation theorems. J. Math. Anal. Appl. 312, 159–180 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Finta, Z., Gupta, V.: Direct and inverse estimates for Phillips type operators. J. Math. Anal. Appl. 303(2), 627–642 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Govil, N.K., Gupta, V., Soybaş, D.: Certain new classes of Durrmeyer type operators. Appl. Math. Comput. 225, 195–203 (2013)MathSciNetMATHGoogle Scholar
  6. 6.
    Gupta, V.: Approximation for modified Baskakov Durrmeyer type operators. Rocky Mt. J. Math. 39(3), 825–841 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gupta, V.: A new class of Durrmeyer operators. Adv. Stud. Contemp. Math. 23(2), 219–224 (2013)MathSciNetMATHGoogle Scholar
  8. 8.
    Gupta, V., Agarwal, R.P.: Convergence Estimates in Approximation Theory. Springer, Cham (2014)CrossRefMATHGoogle Scholar
  9. 9.
    Gupta, V., Rassias, T.M.: Lupas–Durrmeyer operators based on Polya distribution. Banach J. Math. Anal. 8(2), 146–155 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gupta, V., Sinha, J.: Simultaneous approximation for generalized Baskakov–Durrmeyer-type operators. Mediterr. J. Math. 4, 483–495 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gupta, V., Tachev, G.: Approximation by Szász–Mirakyan–Baskakov operators. J. Appl. Funct. Anal. 9(4–3), 308–320 (2014)MathSciNetMATHGoogle Scholar
  12. 12.
    Gupta, V., Tachev, G.: Approximation with Positive Linear Operators and Linear Combinations. Series: Developments in Mathematics, vol. 50. Springer, Cham (2017)CrossRefMATHGoogle Scholar
  13. 13.
    Heilmann, M., Tachev, G.: Linear Combinations of Genuine Szász-Mirakjan–Durrmeyer Operators, Ch 5. In: Anastassiou, G.A., Duman, O. (eds.) Advances in Applied Mathematics and Approximation Theory, Contributions from AMAT 2012, Series: Springer Proceedings in Mathematics & Statistics, Vol. 41, p 490 (2013)Google Scholar
  14. 14.
    Jain, G.C., Pethe, S.: On the generalizations of Bernstein and Szász Mirakjan operators. Nanta Math. 10, 185–193 (1977)MathSciNetMATHGoogle Scholar
  15. 15.
    Lupaş, A.: The approximation by means of some linear positive operators. In: Muller, M.W., Felten, M., Mache, D.H. (eds.) Approximation Theory, Proceedings of the International Dortmund Meeting IDoMAT 95, held in Witten, Germany, March 1317, 1995, Mathematical Research, vol. 86, pp. 201–229. Akademie Verlag, Berlin (1995)Google Scholar
  16. 16.
    Micchelli, C.A.: Saturation class and iterates of the Bernstein polynomials. J. Approx. Theory 8, 1–18 (1973)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2018

Authors and Affiliations

  1. 1.Department of MathematicsNetaji Subhas Institute of TechnologyNew DelhiIndia
  2. 2.University of Architecture, Civil Engineering and GeodesySofiaBulgaria
  3. 3.Department of Mathematics Education, Faculty of EducationErciyes UniversityKayseriTurkey

Personalised recommendations